EEG assessment of intentional tremor during motor imagery

被引:0
作者
Rocha, Ana Carolina [1 ]
Pinheiro, Cristiana [1 ]
Sieghartsleitner, Sebastian [2 ,3 ]
Guger, Christoph [2 ]
Santos, Cristina [4 ]
机构
[1] Univ Minho, Ctr MicroElectroMech Syst CMEMS, P-4800058 Guimaraes, Portugal
[2] G tec Med Engn GmbH, Schiedlberg, Austria
[3] Johannes Kepler Univ Linz, Inst Computat Percept, Linz, Austria
[4] Univ Minho, LABBELS Associate Lab, Ctr MicroElectroMech Syst CMEMS, P-4800058 Guimaraes, Portugal
来源
2024 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC | 2024年
关键词
BCI; EEG; motor imagery; Parkinson's disease; tremor;
D O I
10.1109/ICARSC61747.2024.10535949
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Parkinson's disease (PD) compromises motor function, leading to severe involuntary tremors, impacting the daily lives of patients who suffer from this neurodegenerative disease. Functional electrical stimulation offers a possible solution to mitigate this symptom. Its combination with brain-computer interface (BCI) based on electroencephalography (EEG) can provide real-time feedback during therapy, enhancing motivation and fostering neuroplasticity through motor imagery. This study explores EEG response during motor imagery of multiple tasks with the dominant arm including both intentional and not intentional tremors in healthy participants. The tasks comprise the imagery of wrist dorsiflexion, arm extension, and rest-to-nose, being the last two part of the Movement Disorder Society Unified Parkinson's Disease Rating Scale. Results suggest that arm extension with intentional tremors or wrist dorsiflexion are suitable tasks for motor imagery with similar strong ERDs. The preliminary results are promising for further design of a novel BCI system targeting the reduction of tremors in PD.
引用
收藏
页码:177 / 182
页数:6
相关论文
共 11 条
[1]  
Adama Sophie, 2016, 13 INT MULT MOD SIM
[2]  
[Anonymous], 2023, Parkinson disease
[3]   Sensorimotor Rhythm-Based Brain-Computer Interfaces for Motor Tasks Used in Hand Upper Extremity Rehabilitation after Stroke: A Systematic Review [J].
Fu, Jianghong ;
Chen, Shugeng ;
Jia, Jie .
BRAIN SCIENCES, 2023, 13 (01)
[4]   Artificial Intelligence Algorithms in Visual Evoked Potential-Based Brain-Computer Interfaces for Motor Rehabilitation Applications: Systematic Review and Future Directions [J].
Gutierrez-Martinez, Josefina ;
Mercado-Gutierrez, Jorge A. ;
Carvajal-Gamez, Blanca E. ;
Rosas-Trigueros, Jorge L. ;
Contreras-Martinez, Adrian E. .
FRONTIERS IN HUMAN NEUROSCIENCE, 2021, 15
[5]   Effects of Task Complexity on Motor Imagery-Based Brain-Computer Interface [J].
Mashat, M. Ebrahim M. ;
Lin, Chin-Teng ;
Zhang, Dingguo .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2019, 27 (10) :2178-2185
[6]  
Miladinovic A, 2020, IEEE ENG MED BIO, P3058, DOI 10.1109/EMBC44109.2020.9176651
[7]  
Parkinson's Foundation, 2023, What is Parkinson's
[8]   Brain Computer Interface Treatment for Motor Rehabilitation of Upper Extremity of Stroke Patients-A Feasibility Study [J].
Sebastian-Romagosa, Marc ;
Cho, Woosang ;
Ortner, Rupert ;
Murovec, Nensi ;
Von Oertzen, Tim ;
Kamada, Kyousuke ;
Allison, Brendan Z. ;
Guger, Christoph .
FRONTIERS IN NEUROSCIENCE, 2020, 14
[9]   Applications of brain-computer interfaces in neurodegenerative diseases [J].
Tayebi, Hossein ;
Azadnajafabad, Sina ;
Maroufi, Seyed Farzad ;
Pour-Rashidi, Ahmad ;
Khorasanizadeh, MirHojjat ;
Faramarzi, Sina ;
Slavin, Konstantin V. .
NEUROSURGICAL REVIEW, 2023, 46 (01)
[10]   Investigating the influence of functional electrical stimulation on motor imagery related μ-rhythm suppression [J].
Yakovlev, Lev ;
Syrov, Nikolay ;
Kaplan, Alexander .
FRONTIERS IN NEUROSCIENCE, 2023, 17