Research on road crack segmentation based on deep convolution and transformer with multi-branch feature fusion

被引:0
|
作者
Lai, Yuebo [1 ]
Liu, Bing [1 ]
机构
[1] Shandong Univ Sci & Technol, Sch Comp Sci & Engn, Qingdao 266590, Shandong, Peoples R China
关键词
road pavement crack segmentation; convolutional neural networks; transformers; attention mechanism; depthwise separable convolution;
D O I
10.1088/1361-6501/ad6628
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Efficient and precise identification of road pavement cracks contributes to better evaluation of road conditions. In practical road maintenance and safety assessment, traditional manual crack detection methods are time-consuming, physically demanding, and highly subjective. In addition, crack recognition based on image processing techniques lacks robustness. In this paper, a multi-branch feature fusion road crack segmentation network model (DTPC) based on deep convolution and transformer modules is proposed. The model is used for pixel-level segmentation of road crack images, which is a good solution to the existing needs and helps to repair dangerous cracks promptly in the follow-up work to prevent serious disasters due to crack breakage. Firstly, combine deep convolution with transformer modules to achieve precise local extraction and global contextual feature extraction. Secondly, a dual-channel attention mechanism is employed to help the model better address information loss and positional offset issues. Finally, three-branch outputs are fused to obtain prediction maps that intuitively determine recognition results. The proposed model is tested for accuracy using a dedicated road pavement crack dataset. Results show that compared to mainstream models such as SegFormer, HRNet, PSPNet, and fully convolutional network, the DTPC model achieves the highest MIoU score (86.72%) and F1 score (92.49%).
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Automatic crack segmentation model based on multi-branch aggregation transformer
    Wang, Jin
    Zeng, Zhigao
    Wang, Jianxin
    Zhang, Jianming
    Zhou, Siyuan
    ADVANCES IN STRUCTURAL ENGINEERING, 2024, 27 (13) : 2289 - 2302
  • [2] A Road Crack Segmentation Method Based on Transformer and Multi-Scale Feature Fusion
    Xu, Yang
    Xia, Yonghua
    Zhao, Quai
    Yang, Kaihua
    Li, Qiang
    ELECTRONICS, 2024, 13 (12)
  • [3] Remote Sensing Image Scene Classification Based on Deep Multi-branch Feature Fusion Network
    Zhang Tong
    Zheng En-rang
    Shen Jun-ge
    Gao An-tong
    ACTA PHOTONICA SINICA, 2020, 49 (05)
  • [4] MBFFNet: Multi-Branch Feature Fusion Network for Colonoscopy
    Su, Houcheng
    Lin, Bin
    Huang, Xiaoshuang
    Li, Jiao
    Jiang, Kailin
    Duan, Xuliang
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2021, 9
  • [5] MBFFNet: Multi-Branch Feature Fusion Network for Colonoscopy
    Su, Houcheng
    Lin, Bin
    Huang, Xiaoshuang
    Li, Jiao
    Jiang, Kailin
    Duan, Xuliang
    Frontiers in Bioengineering and Biotechnology, 2021, 9
  • [6] Detail and Deep Feature Multi-Branch Fusion Network for High-Resolution Farmland Remote-Sensing Segmentation
    Tang, Zhankui
    Pan, Xin
    She, Xiangfei
    Ma, Jing
    Zhao, Jian
    REMOTE SENSING, 2025, 17 (05)
  • [7] COMPOUND MULTI-BRANCH FEATURE FUSION FOR IMAGE DERAINDROP
    Fan, Chi-Mao
    Liu, Tsung-Jung
    Liu, Kuan-Hsien
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 3399 - 3403
  • [8] MultiTrans: Multi-branch transformer network for medical image segmentation
    Zhang, Yanhua
    Balestra, Gabriella
    Zhang, Ke
    Wang, Jingyu
    Rosati, Samanta
    Giannini, Valentina
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2024, 254
  • [9] A deep temporal network for motor imagery classification based on multi-branch feature fusion and attention mechanism
    Zhao, Jinke
    Liu, Mingliang
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 100
  • [10] Classification and segmentation of defect carrots using deep multi-branch models fusion network
    Xie W.
    Wei S.
    Zheng Z.
    Yang G.
    Ding X.
    Yang D.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2021, 37 (02): : 177 - 186