Head and neck cancer treatment outcome prediction: a comparison between machine learning with conventional radiomics features and deep learning radiomics( vol 10 , 1217037 , 2023)

被引:0
作者
Huynh, Bao Ngoc [1 ]
Groendahl, Aurora Rosvoll [1 ]
Tomic, Oliver [1 ]
Liland, Kristian Hovde [1 ]
Knudtsen, Ingerid Skjei [2 ,3 ]
Hoebers, Frank [4 ,5 ]
van Elmpt, Wouter [4 ,5 ]
Malinen, Eirik [3 ,6 ]
Dale, Einar [7 ]
Futsaether, Cecilia Marie [1 ]
机构
[1] Norwegian Univ Life Sci, Fac Sci & Technol, As, Norway
[2] Norwegian Univ Sci & Technol, Dept Circulat & Med Imaging, Trondheim, Norway
[3] Oslo Univ Hosp, Dept Med Phys, Oslo, Norway
[4] Maastricht Univ, Med Ctr, Dept Radiat Oncol MAASTRO, Maastricht, Netherlands
[5] Maastricht Univ, Med Ctr, GROW Sch Oncol & Reprod, Maastricht, Netherlands
[6] Univ Oslo, Dept Phys, Oslo, Norway
[7] Oslo Univ Hosp, Dept Oncol, Oslo, Norway
关键词
machine learning; deep learning; artificial intelligence; feature selection; radiomics; head and neck cancer; interpretability; outcome prediction;
D O I
10.3389/fmed.2024.1421603
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
引用
收藏
页数:1
相关论文
共 1 条
  • [1] Head and neck cancer treatment outcome prediction: a comparison between machine learning with conventional radiomics features and deep learning radiomics
    Huynh, Bao Ngoc
    Groendahl, Aurora Rosvoll
    Tomic, Oliver
    Liland, Kristian Hovde
    Knudtsen, Ingerid Skjei
    Hoebers, Frank
    van Elmpt, Wouter
    Malinen, Eirik
    Dale, Einar
    Futsaether, Cecilia Marie
    [J]. FRONTIERS IN MEDICINE, 2023, 10