Optimal long time error estimates of a second-order decoupled finite element method for the Stokes-Darcy problem

被引:1
作者
Guo, Liming [1 ]
机构
[1] Xinyang Normal Univ, Sch Math & Stat, Xinyang 464000, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2024年 / 134卷
基金
中国国家自然科学基金;
关键词
Stokes-Darcy problem; Stokes-Darcy problem Second-order backward differentiation formula; Error estimates; COUPLING FLUID-FLOW; JOSEPH; BEAVERS; EFFICIENT; SCHEMES; STEPS;
D O I
10.1016/j.cnsns.2024.108024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a second -order decoupled finite element method based on lagging a part of the interfacial coupling terms for the time dependent Stokes-Darcy problem, which only need to solve two sub -physical problems sequentially. Under a modest time step restriction dt <= C (physical parameters), the optimal long time error estimates are obtained both in the L 2 norm and in the H 1 norm. Numerical results are provided to illustrate the convergence rate O ( dt 2 ) of the temporal approximation.
引用
收藏
页数:17
相关论文
共 37 条
[1]  
Adams R.A., 2003, SOBOLEV SPACES
[2]   UNIFIED STABILIZED FINITE ELEMENT FORMULATIONS FOR THE STOKES AND THE DARCY PROBLEMS [J].
Badia, Santiago ;
Codina, Ramon .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) :1971-2000
[3]   BOUNDARY CONDITIONS AT A NATURALLY PERMEABLE WALL [J].
BEAVERS, GS ;
JOSEPH, DD .
JOURNAL OF FLUID MECHANICS, 1967, 30 :197-&
[4]   A multilevel decoupled method for a mixed Stokes/Darcy model [J].
Cai, Mingchao ;
Mu, Mo .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (09) :2452-2465
[5]   Decoupled modified characteristic FEMs for fully evolutionary Navier-Stokes-Darcy model with the Beavers-Joseph interface condition [J].
Cao, Luling ;
He, Yinnian ;
Li, Jian ;
Yang, Di .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 383
[6]   FINITE ELEMENT APPROXIMATIONS FOR STOKES-DARCY FLOW WITH BEAVERS-JOSEPH INTERFACE CONDITIONS [J].
Cao, Yanzhao ;
Gunzburger, Max ;
Hu, Xiaolong ;
Hua, Fei ;
Wang, Xiaoming ;
Zhao, Weidong .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 47 (06) :4239-4256
[7]   Uniquely solvable and energy stable decoupled numerical schemes for the Cahn-Hilliard-Stokes-Darcy system for two-phase flows in karstic geometry [J].
Chen, Wenbin ;
Han, Daozhi ;
Wang, Xiaoming .
NUMERISCHE MATHEMATIK, 2017, 137 (01) :229-255
[8]   An efficient and long-time accurate third-order algorithm for the Stokes-Darcy system [J].
Chen, Wenbin ;
Gunzburger, Max ;
Sun, Dong ;
Wang, Xiaoming .
NUMERISCHE MATHEMATIK, 2016, 134 (04) :857-879
[9]   Weak Galerkin method for the coupled Darcy-Stokes flow [J].
Chen, Wenbin ;
Wang, Fang ;
Wang, Yanqiu .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (02) :897-921
[10]   EFFICIENT AND LONG-TIME ACCURATE SECOND-ORDER METHODS FOR THE STOKES-DARCY SYSTEM [J].
Chen, Wenbin ;
Gunzburger, Max ;
Sun, Dong ;
Wang, Xiaoming .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (05) :2563-2584