Shape-Constrained Statistical Inference

被引:0
作者
Dumbgen, Lutz [1 ]
机构
[1] Univ Bern, Inst Math Stat & Actuarial Sci, Dept Math & Stat, Bern, Switzerland
关键词
adaptivity; convexity; distributional regression; honest confidence region; log-concavity; monotonicity; regression quantile; LOG-CONCAVE DENSITY; MAXIMUM-LIKELIHOOD-ESTIMATION; CONFIDENCE BANDS; REGRESSION; APPROXIMATION; CONVERGENCE; ALGORITHM; TESTS;
D O I
10.1146/annurev-statistics-033021-014937
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Statistical models defined by shape constraints are a valuable alternative to parametric models or nonparametric models defined in terms of quantitative smoothness constraints. While the latter two classes of models are typically difficult to justify a priori, many applications involve natural shape constraints, for instance, monotonicity of a density or regression function. We review some of the history of this subject and recent developments, with special emphasis on algorithmic aspects, adaptivity, honest confidence bands for shape-constrained curves, and distributional regression, i.e., inference about the conditional distribution of a real-valued response given certain covariates.
引用
收藏
页码:373 / 391
页数:19
相关论文
共 73 条
  • [1] [Anonymous], 1995, Stat. Neerl., DOI [10.1111/j.1467-9574.1995.tb01464.x, DOI 10.1111/J.1467-9574.1995.TB01464.X]
  • [2] [Anonymous], 1988, Order Restricted Statistical Inference
  • [3] [Anonymous], 1994, Nonparametric regression and generalized linear models
  • [4] ADDITIVE ISOTONIC MODELS
    BACCHETTI, P
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (405) : 289 - 294
  • [5] Score estimation in the monotone single-index model
    Balabdaoui, Fadoua
    Groeneboom, Piet
    Hendrickx, Kim
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2019, 46 (02) : 517 - 544
  • [6] Estimation of a k-monotone density: characterizations, consistency and minimax lower bounds
    Balabdaoui, Fadoua
    Wellner, Jon A.
    [J]. STATISTICA NEERLANDICA, 2010, 64 (01) : 45 - 70
  • [7] LIMIT DISTRIBUTION THEORY FOR MAXIMUM LIKELIHOOD ESTIMATION OF A LOG-CONCAVE DENSITY
    Balabdaoui, Fadoua
    Rufibach, Kaspar
    Wellner, Jon A.
    [J]. ANNALS OF STATISTICS, 2009, 37 (03) : 1299 - 1331
  • [8] Banerjee M, 2001, ANN STAT, V29, P1699
  • [9] Borell C., 1975, Period. Math. Hung., V6, P111
  • [10] MAXIMUM LIKELIHOOD ESTIMATES OF MONOTONE PARAMETERS
    BRUNK, HD
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1955, 26 (04): : 607 - 616