Ternary Polymer Solar Cells: Impact of Non-Fullerene Acceptors on Optical and Morphological Properties

被引:0
|
作者
Eynaud, Quentin [1 ]
Koganezawa, Tomoyuki [2 ]
Sekimoto, Hidehiro [3 ]
Kramdi, Mohamed el Amine [1 ]
Quelever, Gilles [1 ]
Margeat, Olivier [1 ]
Ackermann, Joerg [1 ]
Yoshimoto, Noriyuki [3 ]
Videlot-Ackermann, Christine [1 ]
机构
[1] Aix Marseille Univ, CNRS, CINAM, F-13007 Marseille, France
[2] Japan Synchrotron Radiat Res Inst JASRI, Ind Applicat Div, Sayo, Hyogo 6795198, Japan
[3] Iwate Univ, Dept Phys Sci & Mat Engn, Morioka, Iwate 0208551, Japan
关键词
ternary organic solar cells; non-fullerene acceptors; bulk heterojunction; thermal annealing; molecular order; charge transport; PHASE-SEPARATION; SENSITIZATION;
D O I
10.3390/electronics13091752
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Ternary organic solar cells contain a single three-component photoactive layer with a wide absorption window, achieved without the need for multiple stacking. However, adding a third component into a well-known binary blend can influence the energetics, optical window, charge carrier transport, crystalline order and conversion efficiency. In the form of binary blends, the low-bandgap regioregular polymer donor poly(3-hexylthiophene-2,5-diyl), known as P3HT, is combined with the acceptor PC61BM, an inexpensive fullerene derivative. Two different non-fullerene acceptors (ITIC and eh-IDTBR) are added to this binary blend to form ternary blends. A systematic comparison between binary and ternary systems was carried out as a function of the thermal annealing temperature of organic layers (100 degrees C and 140 degrees C). The power conversion efficiency (PCE) is improved due to increased fill factor (FF) and open-circuit voltage (Voc) for thermal-annealed ternary blends at 140 degrees C. The transport properties of electrons and holes were investigated in binary and ternary blends following a Space-Charge-Limited Current (SCLC) protocol. A favorable balanced hole-electron mobility is obtained through the incorporation of either ITIC or eh-IDTBR. The charge transport behavior is correlated with the bulk heterojunction (BHJ) morphology deduced from atomic force microscopy (AFM), contact water angle (CWA) measurement and 2D grazing-incidence X-ray diffractometry (2D-GIXRD).
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Functionality of Non-Fullerene Electron Acceptors in Ternary Organic Solar Cells
    Zhu, Tao
    Zheng, Luyao
    Xiao, Zuo
    Meng, Xianyi
    Liu, Lei
    Ding, Liming
    Gong, Xiong
    SOLAR RRL, 2019, 3 (12)
  • [2] Ternary organic solar cells based on non-fullerene acceptors: A review
    Chang, Lichun
    Sheng, Ming
    Duan, Leiping
    Uddin, Ashraf
    ORGANIC ELECTRONICS, 2021, 90
  • [3] Non-Fullerene Acceptors for Organic Solar Cells
    Trukhanov, V. A.
    Paraschuk, D. Yu.
    POLYMER SCIENCE SERIES C, 2014, 56 (01) : 72 - 83
  • [4] Non-fullerene acceptors for organic solar cells
    Yan, Cenqi
    Barlow, Stephen
    Wang, Zhaohui
    Yan, He
    Jen, Alex K. -Y.
    Marder, Seth R.
    Zhan, Xiaowei
    NATURE REVIEWS MATERIALS, 2018, 3 (03):
  • [5] Optical properties of recent non-fullerene molecular acceptors for bulk heterojunction solar cells
    Farina, Andrea
    Paterno, Giuseppe M.
    Scotognella, Francesco
    RESULTS IN PHYSICS, 2020, 19
  • [6] Development of fullerene acceptors and the application of non-fullerene acceptors in organic solar cells
    Du, Wen-Shuo
    Wang, Gong
    Li, Yun-Fei
    Yu, Yu
    FRONTIERS IN PHYSICS, 2024, 12
  • [7] New developments in non-fullerene small molecule acceptors for polymer solar cells
    Liang, Ningning
    Jiang, Wei
    Hou, Jianhui
    Wang, Zhaohui
    MATERIALS CHEMISTRY FRONTIERS, 2017, 1 (07) : 1291 - 1303
  • [8] Efficient Organic Solar Cells with Non-Fullerene Acceptors
    Li, Shuixing
    Liu, Wenqing
    Li, Chang-Zhi
    Shi, Minmin
    Chen, Hongzheng
    SMALL, 2017, 13 (37)
  • [9] Miscibility-Driven Optimization of Nanostructures in Ternary Organic Solar Cells Using Non-fullerene Acceptors
    Naveed, Hafiz Bilal
    Ma, Wei
    JOULE, 2018, 2 (04) : 621 - 641
  • [10] Non-fullerene polymer acceptors based on perylene diimides in all-polymer solar cells
    Liu, Zhitian
    Zeng, Di
    Gao, Xiang
    Li, Pengcheng
    Zhang, Qi
    Peng, Xiang
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2019, 189 : 103 - 117