Special Session: Reliability Assessment Recipes for DNN Accelerators

被引:1
|
作者
Ahmadilivani, Mohammad Hasan [1 ]
Bosio, Alberto [2 ]
Deveautour, Bastien [2 ]
dos Santos, Fernando Fernandes [3 ]
Guerrero-Balaguera, Juan-David [4 ]
Jenihhin, Maksim [1 ]
Kritikakou, Angeliki [3 ]
Sierra, Robert Limas [4 ]
Pappalardo, Salvatore [2 ]
Raik, Jaan [1 ]
Condia, Josie E. Rodriguez [4 ]
Reorda, Matteo Sonza [4 ]
Taheri, Mahdi [1 ]
Traiola, Marcello [3 ]
机构
[1] Tallinn Univ Technol, Tallinn, Estonia
[2] Ecole Cent Lyon, CPE Lyon, INL, Ecully, France
[3] Univ Rennes, CNRS, Irma, IRISA,UMR 6074, F-35000 Rennes, France
[4] Politecn Torino, Turin, Italy
关键词
deep neural networks; approximate computing; fault simulation; error emulation; reliability; resiliency assessment;
D O I
10.1109/VTS60656.2024.10538707
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Reliability assessment is mandatory to guarantee the correct behavior of Deep Neural Network (DNN) hardware accelerators in safety-critical applications. While fault injection stands out as a well-established, practical and robust method for reliability assessment, it is still a very time-consuming process. This paper contributes with three recipes for optimizing the efficiency of the reliability assessment: a) hybrid analytical and hierarchical FI-based reliability assessment for systolic-array-based DNN accelerators; b) mixing techniques for the reliability assessment of in-chip AI accelerators in GPUs; c) reliability assessment of DNN hardware accelerators through physical fault injection. The experimental results demonstrate the efficiency of the proposed methods applied to their target DNN HW accelerator platforms.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Special protection system reliability assessment
    Hsiao, Tsun-Yu
    Lu, Chan-Nan
    2007 IEEE CONFERENCE ON INDUSTRIAL AND COMMERCIAL POWER SYSTEMS-TECHNICAL CONFERENCE, 2007, : 92 - 98
  • [32] Fault Resilience of DNN Accelerators for Compressed Sensor Inputs
    Arunachalam, Ayush
    Kundu, Shamik
    Raha, Arnab
    Banerjee, Suvadeep
    Basu, Kanad
    2022 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI 2022), 2022, : 329 - 332
  • [33] Shaped Pruning for Efficient Memory Addressing in DNN Accelerators
    Woo, Yunhee
    Kim, Dongyoung
    Jeong, Jaemin
    Lee, Jeong-Gun
    2021 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS-ASIA (ICCE-ASIA), 2021,
  • [34] A DNN Protection Solution for PIM accelerators with Model Compression
    Zhao, Lei
    Zhang, Youtao
    Yang, Jun
    2022 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI 2022), 2022, : 320 - 325
  • [35] Lightning Talk: Efficiency and Programmability of DNN Accelerators and GPUs
    Ro, Won Woo
    2023 60TH ACM/IEEE DESIGN AUTOMATION CONFERENCE, DAC, 2023,
  • [36] Fault Resilience Techniques for Flash Memory of DNN Accelerators
    Lu, Shyue-Kung
    Wu, Yu-Sheng
    Hong, Jin-Hua
    Miyase, Kohei
    2022 IEEE INTERNATIONAL TEST CONFERENCE IN ASIA (ITC-ASIA 2022), 2022, : 1 - 6
  • [37] NeuroSpector: Systematic Optimization of Dataflow Scheduling in DNN Accelerators
    Park, Chanho
    Kim, Bogil
    Ryu, Sungmin
    Song, William J.
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2023, 34 (08) : 2279 - 2294
  • [38] Special Session: How Approximate Computing impacts Verification, Test and Reliability
    Sekanina, L.
    Vasicek, Z.
    Bosio, A.
    Traiola, M.
    Rech, P.
    Oliveria, D.
    Fernandes, F.
    Di Carlo, S.
    2018 IEEE 36TH VLSI TEST SYMPOSIUM (VTS 2018), 2018,
  • [39] AdaPT: Fast Emulation of Approximate DNN Accelerators in PyTorch
    Danopoulos, Dimitrios
    Zervakis, Georgios
    Siozios, Kostas
    Soudris, Dimitrios
    Henkel, Joerg
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2023, 42 (06) : 2074 - 2078
  • [40] Heterogeneous Dataflow Accelerators for Multi-DNN Workloads
    Kwon, Hyoukjun
    Lai, Liangzhen
    Pellauer, Michael
    Krishna, Tushar
    Chen, Yu-Hsin
    Chandra, Vikas
    2021 27TH IEEE INTERNATIONAL SYMPOSIUM ON HIGH-PERFORMANCE COMPUTER ARCHITECTURE (HPCA 2021), 2021, : 71 - 83