Special Session: Reliability Assessment Recipes for DNN Accelerators

被引:1
|
作者
Ahmadilivani, Mohammad Hasan [1 ]
Bosio, Alberto [2 ]
Deveautour, Bastien [2 ]
dos Santos, Fernando Fernandes [3 ]
Guerrero-Balaguera, Juan-David [4 ]
Jenihhin, Maksim [1 ]
Kritikakou, Angeliki [3 ]
Sierra, Robert Limas [4 ]
Pappalardo, Salvatore [2 ]
Raik, Jaan [1 ]
Condia, Josie E. Rodriguez [4 ]
Reorda, Matteo Sonza [4 ]
Taheri, Mahdi [1 ]
Traiola, Marcello [3 ]
机构
[1] Tallinn Univ Technol, Tallinn, Estonia
[2] Ecole Cent Lyon, CPE Lyon, INL, Ecully, France
[3] Univ Rennes, CNRS, Irma, IRISA,UMR 6074, F-35000 Rennes, France
[4] Politecn Torino, Turin, Italy
关键词
deep neural networks; approximate computing; fault simulation; error emulation; reliability; resiliency assessment;
D O I
10.1109/VTS60656.2024.10538707
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Reliability assessment is mandatory to guarantee the correct behavior of Deep Neural Network (DNN) hardware accelerators in safety-critical applications. While fault injection stands out as a well-established, practical and robust method for reliability assessment, it is still a very time-consuming process. This paper contributes with three recipes for optimizing the efficiency of the reliability assessment: a) hybrid analytical and hierarchical FI-based reliability assessment for systolic-array-based DNN accelerators; b) mixing techniques for the reliability assessment of in-chip AI accelerators in GPUs; c) reliability assessment of DNN hardware accelerators through physical fault injection. The experimental results demonstrate the efficiency of the proposed methods applied to their target DNN HW accelerator platforms.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Special Session: Approximation and Fault Resiliency of DNN Accelerators
    Ahmadilivani, Mohammad Hasan
    Barbareschi, Mario
    Barone, Salvatore
    Bosio, Alberto
    Daneshtalab, Masoud
    Della Torca, Salvatore
    Gavarini, Gabriele
    Jenihhin, Maksim
    Raik, Jaan
    Ruospo, Annachiara
    Sanchez, Ernesto
    Taheri, Mahdi
    2023 IEEE 41ST VLSI TEST SYMPOSIUM, VTS, 2023,
  • [2] Special Session: Fault Criticality Assessment in AI Accelerators
    Chaudhuri, Arjun
    Talukdar, Jonti
    Chakrabarty, Krishnendu
    2022 IEEE 40TH VLSI TEST SYMPOSIUM (VTS), 2022,
  • [3] A survey on modeling and improving reliability of DNN algorithms and accelerators
    Mittal, Sparsh
    JOURNAL OF SYSTEMS ARCHITECTURE, 2020, 104
  • [4] Special session "software reliability engineering"
    Grosspietsch, KE
    PROCEEDINGS OF THE 26TH EUROMICRO CONFERENCE, VOLS I AND II, 2000, : A192 - A192
  • [5] DeepAxe: A Framework for Exploration of Approximation and Reliability Trade-offs in DNN Accelerators
    Taheri, Mahdi
    Riazati, Mohammad
    Ahmadilivani, Mohammad Hasan
    Jenihhin, Maksim
    Daneshtalab, Masoud
    Raik, Jaan
    Sjodin, Mikael
    Lisper, Bjorn
    2023 24TH INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN, ISQED, 2023, : 406 - 413
  • [6] SAFFIRA: a Framework for Assessing the Reliability of Systolic-Array-Based DNN Accelerators
    Taheri, Mahdi
    Daneshtalab, Masoud
    Raik, Jaan
    Jenihhin, Maksim
    Pappalardo, Salvatore
    Jimenez, Paul
    Deveautour, Bastien
    Bosio, Alberto
    2024 27TH INTERNATIONAL SYMPOSIUM ON DESIGN & DIAGNOSTICS OF ELECTRONIC CIRCUITS & SYSTEMS, DDECS, 2024, : 19 - 24
  • [7] Energy Profiling of DNN Accelerators
    Wess, Matthias
    Dallinger, Dominik
    Schnoell, Daniel
    Bittner, Matthias
    Goetzinger, Maximilian
    Jantsch, Axel
    2023 26TH EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN, DSD 2023, 2023, : 53 - 60
  • [8] Exploration of Activation Fault Reliability in Quantized Systolic Array-Based DNN Accelerators
    Taheri, Mahdi
    Cherezova, Natalia
    Ansari, Mohammad Saeed
    Jenihhin, Maksim
    Mahani, Ali
    Daneshtalab, Masoud
    Raik, Jaan
    2024 25TH INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN, ISQED 2024, 2024,
  • [9] Analog Weights in ReRAM DNN Accelerators
    Eshraghian, Jason K.
    Kang, Sung-Mo
    Baek, Seungbum
    Orchard, Garrick
    Iu, Herbert Ho-Ching
    Lei, Wen
    2019 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS 2019), 2019, : 267 - 271
  • [10] Rapid Emulation of Approximate DNN Accelerators
    Farahbakhsh, Amirreza
    Hosseini, Seyedmehdi
    Kachuee, Sajjad
    Sharilkhani, Mohammad
    2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,