On the inverse problem for free quasiconformality in Banach spaces

被引:0
作者
He, Yuehui [1 ]
Li, Liulan [2 ]
Zhou, Qingshan [1 ]
机构
[1] Foshan Univ, Sch Math & Big Data, Foshan 528000, Guangdong, Peoples R China
[2] Hengyang Normal Univ, Coll Math & Stat, Hengyang 421002, Hunan, Peoples R China
关键词
quasiconformal homeomorphism; quasihyperbolic metric; quasi- symmetric homeomorphism; solid map; QUASI-CONFORMAL MAPS; QUASIHYPERBOLIC MAPPINGS; LIPSCHITZ;
D O I
10.4064/sm231011-19-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is known that the inverse of a quasiconformal homeomorphism of domains in R n is also quasiconformal. This paper focuses on the inverse problem for free quasiconformality in Banach spaces. We first show that the inverse of a fully semisolid homeomorphism is fully semisolid under an additional coarsely Lipschitz condition in the quasihyperbolic metric. This gives several partial answers to two open problems posed by V & auml;is & auml;l & auml;. Next, we prove that the inverse of a locally quasisymmetric homeomorphism is also locally quasisymmetric. As applications, we obtain new characterizations of freely quasiconformal mappings in Banach spaces, and study the relation between freely quasiconformal mappings and quasisymmetric mappings between uniform domains.
引用
收藏
页码:151 / 168
页数:18
相关论文
共 30 条
  • [1] Bounded Geometry andp-Harmonic Functions Under Uniformization and Hyperbolization
    Bjorn, Anders
    Bjorn, Jana
    Shanmugalingam, Nageswari
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (05) : 5259 - 5308
  • [2] Bonk M., 2001, ASTERISQUE, V270
  • [3] Quasisymmetry and solidity of quasiconformal maps in metric spaces
    Cheng, Tao
    Jiang, Peng
    Yang, Shanshuang
    [J]. STUDIA MATHEMATICA, 2023, 272 (02) : 199 - 219
  • [4] LIPSCHITZ-CONDITIONS IN CONFORMALLY INVARIANT METRICS
    FERRAND, J
    MARTIN, GJ
    VUORINEN, M
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 1991, 56 : 187 - 210
  • [5] Gehring F. W., 1963, ANN ACAD SCI FENN-M, V336
  • [6] UNIFORM DOMAINS AND THE QUASI-HYPERBOLIC METRIC
    GEHRING, FW
    OSGOOD, BG
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 1979, 36 : 50 - 74
  • [7] QUASI-CONFORMALLY HOMOGENEOUS DOMAINS
    GEHRING, FW
    PALKA, BP
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 1976, 30 : 172 - 199
  • [8] Quasisymmetry of freely quasiconformal mappings in Banach spaces
    Guan, Tiantian
    Jiao, Bo
    Ponnusamy, Saminathan
    He, Yuehui
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 526 (01)
  • [9] Hariri P., 2020, Conformally invariant metrics and quasiconformal mappings, P502
  • [10] Quasiconformal maps in metric spaces with controlled geometry
    Heinonen, J
    Koskela, P
    [J]. ACTA MATHEMATICA, 1998, 181 (01) : 1 - 61