Optimized task offloading for federated learning based on β-skeleton graph in edge computing

被引:0
|
作者
Fallah, Mahdi [1 ]
Salehpour, Pedram [1 ]
机构
[1] Univ Tabriz, Fac Elect & Comp Engn, Tabriz, Iran
关键词
Deep reinforcement learning; Federated learning; Task offloading; Policy optimization; COMMUNICATION; CHALLENGES; PRIVACY;
D O I
10.1007/s11235-024-01216-4
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Edge computing is gaining prominence as a solution for IoT data management and processing. Task offloading, which distributes the processing load across edge devices, is a key strategy to enhance the efficiency of edge computing. However, traditional methods often overlook the dynamic nature of the edge environment and the interactions between devices. While reinforcement learning-based task offloading shows promise, it can sometimes lead to an imbalance by favoring weaker servers. To address these issues, this paper presents a novel task offloading method for federated learning that leverages the beta-skeleton graph in edge computing. This model takes into account spatial and temporal dynamics, optimizing task assignments based on both the processing and communication capabilities of the edge devices. The proposed method significantly outperforms five state-of-the-art methods, showcasing substantial improvements in both initial and long-term performance. Specifically, this method demonstrates a 63.46% improvement over the Binary-SPF-EC method in the initial rounds and achieves an average improvement of 76.518% after 400 rounds. Moreover, it excels in sub-rewards and total latency reduction, underscoring its effectiveness in optimizing edge computing communication and processing tasks. These results underscore the superiority of the proposed method, highlighting its potential to enhance the efficiency and scalability of edge computing systems. This approach, by effectively addressing the dynamic nature of the edge environment and optimizing task offloading, contributes to the development of more robust and efficient edge computing frameworks. This work paves the way for future advancements in federated learning and edge computing integration, promising better management and utilization of IoT data.
引用
收藏
页码:759 / 778
页数:20
相关论文
共 50 条
  • [31] Fast Adaptive Task Offloading in Edge Computing Based on Meta Reinforcement Learning
    Wang, Jin
    Hu, Jia
    Min, Geyong
    Zomaya, Albert Y.
    Georgalas, Nektarios
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2021, 32 (01) : 242 - 253
  • [32] Deep Reinforcement Learning-Based Task Offloading and Load Balancing for Vehicular Edge Computing
    Wu, Zhoupeng
    Jia, Zongpu
    Pang, Xiaoyan
    Zhao, Shan
    ELECTRONICS, 2024, 13 (08)
  • [33] Deep Reinforcement Learning Based Task Offloading Strategy Under Dynamic Pricing in Edge Computing
    Shi, Bing
    Chen, Feiyang
    Tang, Xing
    SERVICE-ORIENTED COMPUTING (ICSOC 2021), 2021, 13121 : 578 - 594
  • [34] Q-learning-based task offloading strategy for satellite edge computing
    Shuai, Jiaqi
    Xie, Bo
    Cui, Haixia
    Wang, Jiahuan
    Wen, Weichang
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2024, 37 (05)
  • [35] Task Offloading Optimization in Mobile Edge Computing based on Deep Reinforcement Learning
    Silva, Carlos
    Magaia, Naercio
    Grilo, Antonio
    PROCEEDINGS OF THE INT'L ACM CONFERENCE ON MODELING, ANALYSIS AND SIMULATION OF WIRELESS AND MOBILE SYSTEMS, MSWIM 2023, 2023, : 109 - 118
  • [36] Task Offloading for UAV-based Mobile Edge Computing via Deep Reinforcement Learning
    Li, Jun
    Liu, Qian
    Wu, Pingyang
    Shu, Feng
    Jin, Shi
    2018 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC), 2018, : 798 - 802
  • [37] Optimization of lightweight task offloading strategy for mobile edge computing based on deep reinforcement learning
    Lu, Haifeng
    Gu, Chunhua
    Luo, Fei
    Ding, Weichao
    Liu, Xinping
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 102 : 847 - 861
  • [38] Towards Application-Driven Task Offloading in Edge Computing Based on Deep Reinforcement Learning
    Sun, Ming
    Bao, Tie
    Xie, Dan
    Lv, Hengyi
    Si, Guoliang
    MICROMACHINES, 2021, 12 (09)
  • [39] Task Offloading Strategy Based on Reinforcement Learning Computing in Edge Computing Architecture of Internet of Vehicles
    Wang, Kun
    Wang, Xiaofeng
    Liu, Xuan
    Jolfaei, Alireza
    IEEE ACCESS, 2020, 8 : 173779 - 173789
  • [40] Federated Learning in Edge Computing: A Systematic Survey
    Abreha, Haftay Gebreslasie
    Hayajneh, Mohammad
    Serhani, Mohamed Adel
    SENSORS, 2022, 22 (02)