Optimized task offloading for federated learning based on β-skeleton graph in edge computing

被引:0
|
作者
Fallah, Mahdi [1 ]
Salehpour, Pedram [1 ]
机构
[1] Univ Tabriz, Fac Elect & Comp Engn, Tabriz, Iran
关键词
Deep reinforcement learning; Federated learning; Task offloading; Policy optimization; COMMUNICATION; CHALLENGES; PRIVACY;
D O I
10.1007/s11235-024-01216-4
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Edge computing is gaining prominence as a solution for IoT data management and processing. Task offloading, which distributes the processing load across edge devices, is a key strategy to enhance the efficiency of edge computing. However, traditional methods often overlook the dynamic nature of the edge environment and the interactions between devices. While reinforcement learning-based task offloading shows promise, it can sometimes lead to an imbalance by favoring weaker servers. To address these issues, this paper presents a novel task offloading method for federated learning that leverages the beta-skeleton graph in edge computing. This model takes into account spatial and temporal dynamics, optimizing task assignments based on both the processing and communication capabilities of the edge devices. The proposed method significantly outperforms five state-of-the-art methods, showcasing substantial improvements in both initial and long-term performance. Specifically, this method demonstrates a 63.46% improvement over the Binary-SPF-EC method in the initial rounds and achieves an average improvement of 76.518% after 400 rounds. Moreover, it excels in sub-rewards and total latency reduction, underscoring its effectiveness in optimizing edge computing communication and processing tasks. These results underscore the superiority of the proposed method, highlighting its potential to enhance the efficiency and scalability of edge computing systems. This approach, by effectively addressing the dynamic nature of the edge environment and optimizing task offloading, contributes to the development of more robust and efficient edge computing frameworks. This work paves the way for future advancements in federated learning and edge computing integration, promising better management and utilization of IoT data.
引用
收藏
页码:759 / 778
页数:20
相关论文
共 50 条
  • [11] Research on Task Offloading Based on Deep Reinforcement Learning in Mobile Edge Computing
    Lu H.
    Gu C.
    Luo F.
    Ding W.
    Yang T.
    Zheng S.
    Gu, Chunhua (chgu@ecust.edu.cn), 1600, Science Press (57): : 1539 - 1554
  • [12] Comprehensive survey on reinforcement learning-based task offloading techniques in aerial edge computing
    Nabi, Ahmadun
    Baidya, Tanmay
    Moh, Sangman
    INTERNET OF THINGS, 2024, 28
  • [13] Task offloading of edge computing network based on Lyapunov and deep reinforcement learning
    Qiao, Xudong
    Zhou, Yongxin
    2024 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS, ICCCS 2024, 2024, : 1054 - 1059
  • [14] An Optimized Greedy-Based Task Offloading Method for Mobile Edge Computing
    Zhou, Wei
    Lin, Chuangwei
    Duan, Jirun
    Ren, Ke
    Zhang, Xuyun
    Dou, Wanchun
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2021, PT I, 2022, 13155 : 494 - 508
  • [15] Secure Task Offloading in Blockchain-Enabled Mobile Edge Computing With Deep Reinforcement Learning
    Samy, Ahmed
    Elgendy, Ibrahim A.
    Yu, Haining
    Zhang, Weizhe
    Zhang, Hongli
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2022, 19 (04): : 4872 - 4887
  • [16] Optimized task offloading strategy in IoT edge computing network
    Birhanie, Habtamu Mohammed
    Adem, Mohammed Oumer
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (02)
  • [17] Deep Learning-Based Task Offloading for Vehicular Edge Computing
    Zeng, Feng
    Liu, Chengsheng
    Tangjiang, Junzhe
    Li, Wenjia
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, WASA 2021, PT III, 2021, 12939 : 291 - 298
  • [18] DPRL: Task Offloading Strategy Based on Differential Privacy and Reinforcement Learning in Edge Computing
    Zhang, Peiying
    Gan, Peng
    Chang, Lunjie
    Wen, Wu
    Selvi, M.
    Kibalya, Godfrey
    IEEE ACCESS, 2022, 10 : 54002 - 54011
  • [19] Task offloading method of edge computing in internet of vehicles based on deep reinforcement learning
    Degan Zhang
    Lixiang Cao
    Haoli Zhu
    Ting Zhang
    Jinyu Du
    Kaiwen Jiang
    Cluster Computing, 2022, 25 : 1175 - 1187
  • [20] Deep reinforcement learning-based dynamical task offloading for mobile edge computing
    Xie, Bo
    Cui, Haixia
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01)