Incorporating environmental knowledge embedding and spatial-temporal graph attention networks for inland vessel traffic flow prediction
被引:3
|
作者:
Huang, Chen
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ Technol, State Key Lab Maritime Technol & Safety, Wuhan 430063, Peoples R China
Wuhan Univ Technol, Intelligent Transportat Syst Res Ctr, Wuhan, Peoples R China
Wuhan Univ Technol, Natl Engn Res Ctr Water Transport Safety, Wuhan 430063, Peoples R China
Wuhan Univ Technol, Sch Transportat & Logist Engn, Wuhan 430063, Peoples R ChinaWuhan Univ Technol, State Key Lab Maritime Technol & Safety, Wuhan 430063, Peoples R China
Huang, Chen
[1
,2
,3
,4
]
Chen, Deshan
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ Technol, State Key Lab Maritime Technol & Safety, Wuhan 430063, Peoples R China
Wuhan Univ Technol, Intelligent Transportat Syst Res Ctr, Wuhan, Peoples R China
Wuhan Univ Technol, Natl Engn Res Ctr Water Transport Safety, Wuhan 430063, Peoples R ChinaWuhan Univ Technol, State Key Lab Maritime Technol & Safety, Wuhan 430063, Peoples R China
Chen, Deshan
[1
,2
,3
]
Fan, Tengze
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ Technol, State Key Lab Maritime Technol & Safety, Wuhan 430063, Peoples R China
Wuhan Univ Technol, Intelligent Transportat Syst Res Ctr, Wuhan, Peoples R China
Wuhan Univ Technol, Natl Engn Res Ctr Water Transport Safety, Wuhan 430063, Peoples R China
Wuhan Univ Technol, Sch Transportat & Logist Engn, Wuhan 430063, Peoples R ChinaWuhan Univ Technol, State Key Lab Maritime Technol & Safety, Wuhan 430063, Peoples R China
Fan, Tengze
[1
,2
,3
,4
]
Wu, Bing
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ Technol, State Key Lab Maritime Technol & Safety, Wuhan 430063, Peoples R China
Wuhan Univ Technol, Intelligent Transportat Syst Res Ctr, Wuhan, Peoples R China
Wuhan Univ Technol, Natl Engn Res Ctr Water Transport Safety, Wuhan 430063, Peoples R ChinaWuhan Univ Technol, State Key Lab Maritime Technol & Safety, Wuhan 430063, Peoples R China
Wu, Bing
[1
,2
,3
]
Yan, Xinping
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ Technol, State Key Lab Maritime Technol & Safety, Wuhan 430063, Peoples R China
Wuhan Univ Technol, Intelligent Transportat Syst Res Ctr, Wuhan, Peoples R China
Wuhan Univ Technol, Natl Engn Res Ctr Water Transport Safety, Wuhan 430063, Peoples R ChinaWuhan Univ Technol, State Key Lab Maritime Technol & Safety, Wuhan 430063, Peoples R China
Yan, Xinping
[1
,2
,3
]
机构:
[1] Wuhan Univ Technol, State Key Lab Maritime Technol & Safety, Wuhan 430063, Peoples R China
[2] Wuhan Univ Technol, Intelligent Transportat Syst Res Ctr, Wuhan, Peoples R China
[3] Wuhan Univ Technol, Natl Engn Res Ctr Water Transport Safety, Wuhan 430063, Peoples R China
[4] Wuhan Univ Technol, Sch Transportat & Logist Engn, Wuhan 430063, Peoples R China
Waterborne transportation system status;
Inland vessel traffic flow;
Knowledge;
Representation learning;
Graph attention network;
Long short-term memory network;
D O I:
10.1016/j.engappai.2024.108301
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
Accurate prediction of vessel traffic flow is crucial for maritime regulatory authorities and transportation planners. However, existing methods for inland vessel traffic flow prediction often overlook spatial correlation and environmental influences, leading to suboptimal accuracy. To address this issue, we propose an innovative model that incorporates environmental knowledge embedding and a spatial -temporal information extraction module. Our approach involves constructing a vessel traffic knowledge graph, embedding traffic flow through knowledge representation learning. The spatial -temporal information extraction module is leveraged to analyze inherent periodicity and external spatial relationships in vessel traffic flow. Extensive experiments on real -world datasets demonstrate that our approach significantly enhances predictive accuracy. In comparison to the secondranked model, our approach achieves a decrease of 0.46 in mean absolute error, a decrease of 0.64 in root mean squared error, an increase of 3.06% in accuracy, and an increase of 0.07 in R -squared. Furthermore, our approach excels in upstream, downstream and long-term prediction, and displays robustness in handling noisy data.
机构:
Wuhan Univ, Sch Comp Sci, Wuhan, Peoples R China
Wuhan Inst City, Dept Informat Engn, Wuhan, Peoples R ChinaWuhan Univ, Sch Comp Sci, Wuhan, Peoples R China
Li, Cong
Zhang, Huyin
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Sch Comp Sci, Wuhan, Peoples R ChinaWuhan Univ, Sch Comp Sci, Wuhan, Peoples R China
Zhang, Huyin
Wang, Zengkai
论文数: 0引用数: 0
h-index: 0
机构:
Jiaxing Univ, Coll Informat Sci & Engn, Jiaxing, Peoples R ChinaWuhan Univ, Sch Comp Sci, Wuhan, Peoples R China
Wang, Zengkai
Wu, Yonghao
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Sch Comp Sci, Wuhan, Peoples R China
Wuhan Inst City, Dept Informat Engn, Wuhan, Peoples R ChinaWuhan Univ, Sch Comp Sci, Wuhan, Peoples R China
Wu, Yonghao
Yang, Fei
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Sch Comp Sci, Wuhan, Peoples R ChinaWuhan Univ, Sch Comp Sci, Wuhan, Peoples R China
机构:
Fuzhou Univ, Dept Comp & Data Sci, Fuzhou, Peoples R China
Fuzhou Univ, Fujian Prov Key Lab Network Comp & Intelligent In, Fuzhou, Peoples R ChinaFuzhou Univ, Dept Comp & Data Sci, Fuzhou, Peoples R China
Peng, Yufei
Guo, Yingya
论文数: 0引用数: 0
h-index: 0
机构:
Fuzhou Univ, Dept Comp & Data Sci, Fuzhou, Peoples R China
Fuzhou Univ, Fujian Prov Key Lab Network Comp & Intelligent In, Fuzhou, Peoples R ChinaFuzhou Univ, Dept Comp & Data Sci, Fuzhou, Peoples R China
Guo, Yingya
Hao, Run
论文数: 0引用数: 0
h-index: 0
机构:
Fuzhou Univ, Dept Comp & Data Sci, Fuzhou, Peoples R ChinaFuzhou Univ, Dept Comp & Data Sci, Fuzhou, Peoples R China
Hao, Run
Lin, Junda
论文数: 0引用数: 0
h-index: 0
机构:
Fuzhou Univ, Dept Comp & Data Sci, Fuzhou, Peoples R ChinaFuzhou Univ, Dept Comp & Data Sci, Fuzhou, Peoples R China
Lin, Junda
2023 IEEE 24TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE SWITCHING AND ROUTING, HPSR,
2023,
机构:
Fuzhou Univ, Coll Comp & Data Sci, Fuzhou, Peoples R China
Fuzhou Univ, Fujian Prov Key Lab Network Comp & Intelligent Inf, Fuzhou, Peoples R China
Minist Educ, Engn Res Ctr Big Data Intelligence, Beijing, Peoples R ChinaFuzhou Univ, Coll Comp & Data Sci, Fuzhou, Peoples R China
Peng, Yufei
Guo, Yingya
论文数: 0引用数: 0
h-index: 0
机构:
Fuzhou Univ, Coll Comp & Data Sci, Fuzhou, Peoples R China
Fuzhou Univ, Fujian Prov Key Lab Network Comp & Intelligent Inf, Fuzhou, Peoples R China
Minist Educ, Engn Res Ctr Big Data Intelligence, Beijing, Peoples R ChinaFuzhou Univ, Coll Comp & Data Sci, Fuzhou, Peoples R China
Guo, Yingya
Hao, Run
论文数: 0引用数: 0
h-index: 0
机构:
Fuzhou Univ, Coll Comp & Data Sci, Fuzhou, Peoples R China
Minist Educ, Engn Res Ctr Big Data Intelligence, Beijing, Peoples R ChinaFuzhou Univ, Coll Comp & Data Sci, Fuzhou, Peoples R China
Hao, Run
Xu, Chengzhe
论文数: 0引用数: 0
h-index: 0
机构:
Fuzhou Univ, Coll Comp & Data Sci, Fuzhou, Peoples R China
Fuzhou Univ, Fujian Prov Key Lab Network Comp & Intelligent Inf, Fuzhou, Peoples R China
Minist Educ, Engn Res Ctr Big Data Intelligence, Beijing, Peoples R ChinaFuzhou Univ, Coll Comp & Data Sci, Fuzhou, Peoples R China
机构:
College of Electrical and Information Engineering, Lanzhou University of Technology, Gansu, Lanzhou,730050, China
College of Electrical Engineering, Northwest Minzu University, Gansu, Lanzhou,730030, ChinaCollege of Electrical and Information Engineering, Lanzhou University of Technology, Gansu, Lanzhou,730050, China
Xiao, Wenjuan
Wang, Xiaoming
论文数: 0引用数: 0
h-index: 0
机构:
College of Electrical and Information Engineering, Lanzhou University of Technology, Gansu, Lanzhou,730050, ChinaCollege of Electrical and Information Engineering, Lanzhou University of Technology, Gansu, Lanzhou,730050, China