Impact of Glyme Ether Chain Length on the Interphasial Stability of Lithium-Electrode in High-Capacity Lithium-Metal Battery

被引:17
作者
Dutta, Arghya [1 ]
Matsushita, Kyosuke [2 ]
Kubo, Yoshimi [1 ,3 ]
机构
[1] Natl Inst Mat Sci, Ctr Green Res Energy & Environm Mat, Namiki 1-1, Tsukuba 3050044, Japan
[2] Natl Inst Mat Sci, Ctr Green Res Energy & Environm Mat, Battery Res Platform, 1-1 Namiki, Tsukuba 3050044, Japan
[3] Natl Inst Mat Sci, NIMS SoftBank Adv Technol Dev Ctr, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
基金
日本科学技术振兴机构;
关键词
glyme-ether-electrolyte; Li deposition; Li metal battery; morphological analysis; solid-electrolyte-interphase; HIGH-ENERGY; AIR BATTERIES; LI-AIR; ANODE; PEROXIDE;
D O I
10.1002/advs.202404245
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The realization of lithium-metal (Li) batteries faces challenges due to dendritic Li deposition causing internal short-circuit and low Coulombic efficiency. In this regard, the Li-deposition stability largely depends on the electrolyte, which reacts with Li to form a solid electrolyte interphase (SEI) with diverse physico-chemical properties, and dictates the interphasial kinetics. Therefore, optimizing the electrolyte for stability and performance remains pivotal. Hereof, glyme ethers are an emerging class of electrolytes, showing improved compatibility with metallic Li and enhanced stability in Li-Air and Li-Sulfur batteries. Yet, the criteria for selecting glyme solvents, particularly concerning Li deposition and dissolution processes, remain unclear. The SEI characteristics and Li deposition/dissolution processes are investigated in glyme-ether-based electrolytes with varying chain lengths, using lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium nitrate (LiNO3) salts under high capacity and limited electrolyte conditions. Longer glymes led to more homogeneous SEI, particularly pronounced with LiNO3, minimizing surface roughness during stripping, and promoting compact Li deposits. Higher reductive stability, resulting in homogeneous interphasial properties, and slower kinetics due to high desolvation barrier and viscosity, underline stable Li growth in longer glymes. This study clarifies factors guiding the selection of glyme ether-based electrolytes in Li metal batteries, offering insights for next-generation energy storage systems.
引用
收藏
页数:11
相关论文
共 65 条
[1]   Lithium Batteries and the Solid Electrolyte Interphase (SEI)-Progress and Outlook [J].
Adenusi, Henry ;
Chass, Gregory A. ;
Passerini, Stefano ;
Tian, Kun V. ;
Chen, Guanhua .
ADVANCED ENERGY MATERIALS, 2023, 13 (10)
[2]   Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries [J].
Albertus, Paul ;
Babinec, Susan ;
Litzelman, Scott ;
Newman, Aron .
NATURE ENERGY, 2018, 3 (01) :16-21
[3]   Stability of solid electrolyte interphases and calendar life of lithium metal batteries [J].
Cao, Xia ;
Xu, Yaobin ;
Zou, Lianfeng ;
Bao, Jie ;
Chen, Yunxiang ;
Matthews, Bethany E. ;
Hu, Jiangtao ;
He, Xinzi ;
Engelhard, Mark H. ;
Niu, Chaojiang ;
Arey, Bruce W. ;
Wang, Chunsheng ;
Xiao, Jie ;
Liu, Jun ;
Wang, Chongmin ;
Xu, Wu ;
Zhang, Ji-Guang .
ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (04) :1548-1559
[4]   Effects of fluorinated solvents on electrolyte solvation structures and electrode/electrolyte interphases for lithium metal batteries [J].
Cao, Xia ;
Gao, Peiyuan ;
Ren, Xiaodi ;
Zou, Lianfeng ;
Engelhard, Mark H. ;
Matthews, Bethany E. ;
Hu, Jiangtao ;
Niu, Chaojiang ;
Liu, Dianying ;
Arey, Bruce W. ;
Wang, Chongmin ;
Xiao, Jie ;
Liu, Jun ;
Xu, Wu ;
Zhang, Ji-Guang .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (09)
[5]   Lithium-Air Batteries: Air-Electrochemistry and Anode Stabilization [J].
Chen, Kai ;
Yang, Dong-Yue ;
Huang, Gang ;
Zhang, Xin-Bo .
ACCOUNTS OF CHEMICAL RESEARCH, 2021, 54 (03) :632-641
[6]   Toward Practical High-Energy-Density Lithium-Sulfur Pouch Cells: A Review [J].
Chen, Zi-Xian ;
Zhao, Meng ;
Hou, Li-Peng ;
Zhang, Xue-Qiang ;
Li, Bo-Quan ;
Huang, Jia-Qi .
ADVANCED MATERIALS, 2022, 34 (35)
[7]   Glyme-based electrolytes: suitable solutions for next-generation lithium batteries [J].
Di Lecce, Daniele ;
Marangon, Vittorio ;
Jung, Hun-Gi ;
Tominaga, Yoichi ;
Greenbaum, Steve ;
Hassoun, Jusef .
GREEN CHEMISTRY, 2022, 24 (03) :1021-1048
[8]   High-Rate Discharge Minimizes Volume Expansion of Lithium Metal Electrodes under Lean Electrolyte and High Areal Capacity Conditions [J].
Dutta, Arghya ;
Mizuki, Emiko ;
Matsuda, Shoichi .
BATTERIES & SUPERCAPS, 2023, 6 (11)
[9]   Deciphering the Dynamic Processes at the Electrode-Electrolyte Interface for Stable Deposition of Lithium [J].
Dutta, Arghya ;
Kubo, Yoshimi ;
Nagataki, Atsuko ;
Matsushita, Kyosuke .
ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (12) :15467-15477
[10]   Nanoconfined growth of lithium-peroxide inside electrode pores: a noncatalytic strategy toward mitigating capacity-rechargeability trade-off in lithium-air batteries [J].
Dutta, Arghya ;
Ito, Kimihiko ;
Kubo, Yoshimi .
MATERIALS ADVANCES, 2021, 2 (04) :1302-1312