On the Spectrum of Quasi-periodic Schrodinger Operators on Zd with C2-Cosine Type Potentials

被引:0
作者
Cao, Hongyi [1 ]
Shi, Yunfeng [2 ]
Zhang, Zhifei [1 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
关键词
DENSITY-OF-STATES; ANDERSON LOCALIZATION; EQUATION;
D O I
10.1007/s00220-024-05073-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we establish the Anderson localization, strong dynamical localization and the (1/2-)-Holder continuity of the integrated density of states (IDS) for some multi-dimensional discrete quasi-periodic (QP) Schrodinger operators with asymmetric C-2-cosine type potentials. We extend both the iteration scheme of Cao-Shi-Zhang (Commun Math Phys 404(1):495-561, 2023) and the interlacing method of Forman and VandenBoom (Localization and Cantor spectrum for quasiperiodic discrete Schrodinger operators with asymmetric, smooth, cosine-like sampling functions. arXiv:2107.05461, 2021) to handle asymmetric Rellich functions with collapsed gaps.
引用
收藏
页数:84
相关论文
共 29 条
[1]   SHARP PHASE TRANSITIONS FOR THE ALMOST MATHIEU OPERATOR [J].
Avila, Artur ;
You, Jiangong ;
Zhou, Qi .
DUKE MATHEMATICAL JOURNAL, 2017, 166 (14) :2697-2718
[2]   Holder regularity of integrated density of states for the Almost Mathieu operator in a perturbative regime [J].
Bourgain, J .
LETTERS IN MATHEMATICAL PHYSICS, 2000, 51 (02) :83-118
[3]   Absolutely continuous spectrum for 1D quasiperiodic operators [J].
Bourgain, J ;
Jitomirskaya, S .
INVENTIONES MATHEMATICAE, 2002, 148 (03) :453-463
[4]   Anderson localization for Schrodinger operators on Z2 with quasi-periodic potential [J].
Bourgain, J ;
Goldstein, M ;
Schlag, W .
ACTA MATHEMATICA, 2002, 188 (01) :41-86
[5]   On nonperturbative localization with quasi-periodic potential [J].
Bourgain, J ;
Goldstein, M .
ANNALS OF MATHEMATICS, 2000, 152 (03) :835-879
[6]  
Bourgain J., 2005, GREENS FUNCTION ESTI
[7]  
Bourgain J, 2007, GEOM FUNCT ANAL, V17, P682, DOI 10.1007/s00039-007-0610-2
[8]   Quantitative Green's function estimates for lattice quasi-periodic Schrodinger operators [J].
Cao, Hongyi ;
Shi, Yunfeng ;
Zhang, Zhifei .
SCIENCE CHINA-MATHEMATICS, 2024, 67 (05) :1011-1058
[9]  
Cao HY, 2023, COMMUN MATH PHYS, V404, P495, DOI 10.1007/s00220-023-04847-x
[10]   METHODS OF KAM-THEORY FOR LONG-RANGE QUASI-PERIODIC OPERATORS ON Z-NU - PURE POINT SPECTRUM [J].
CHULAEVSKY, VA ;
DINABURG, EI .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 153 (03) :559-577