ISEANet: An interpretable subdomain enhanced adaptive network for unsupervised cross-domain fault diagnosis of rolling bearing

被引:14
|
作者
Liu, Bin [1 ]
Yan, Changfeng [1 ]
Liu, Yaofeng [1 ]
Lv, Ming [1 ]
Huang, Yuan [1 ]
Wu, Lixiao [1 ]
机构
[1] Lanzhou Univ Technol, Sch Mech & Elect Engn, Lanzhou 730050, Peoples R China
基金
中国国家自然科学基金;
关键词
Interpretability; Subdomain enhanced adaptive; Cross -domain fault diagnosis; Physical knowledge; Improved local maximum mean discrepancy; ROTATING MACHINERY; ADAPTATION;
D O I
10.1016/j.aei.2024.102610
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised Domain Adaptation (UDA) has gained widespread application in bearing fault diagnosis across various operational conditions, attributed to its commendable transfer diagnosis efficacy. However, global Domain Adaptation (DA) under the influence of noise interference often overlooks subdomain distribution, leading to local distinctions among multiple categories. To address these challenges, this paper proposes an Interpretable Subdomain Enhanced Adaptive Network (ISEANet), which enhances subdomain representation from key facets: initial sample processing, intermediate feature mapping, and subdomain discrepancy calculation. Firstly, the Sparse Subsegment-guided Noise Reduction (SSNR) layer is formulated to enhance the physical knowledge. Subsequently, Lightweight Multi-Feature Extraction Module (LMFEMod) is designed to comprehensively capture domain discriminable features from local and global perspectives to enhance the coordinated adaptation and interpretability between physical knowledge and feature mapping. Moreover, a novel subdomain metric method, Improved Local Maximum Mean Discrepancy (ILMMD), is proposed. ILMMD introduces a priori probability distributions between different labels, replacing the original hard labels. This modification aims to increase the distance between clustering centers and bridge subdomain gaps during Subdomain Adaptation (SA), and further enhances the reliability of subdomain discrepancy calculations. Comparative tests with other prevalent methods on public and Lanzhou University of Technology (LUT) bearing dataset for the transfer task are conducted, and the results show that ISEANet exhibits excellent cross-domain diagnostic performance.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Multiscale Residual Antinoise Network via Interpretable Dynamic Recalibration Mechanism for Rolling Bearing Fault Diagnosis With Few Samples
    Liu, Bin
    Yan, Changfeng
    Liu, Yaofeng
    Wang, Zonggang
    Huang, Yuan
    Wu, Lixiao
    IEEE SENSORS JOURNAL, 2023, 23 (24) : 31425 - 31439
  • [42] Dynamic Distribution Adaptation Based Transfer Network for Cross Domain Bearing Fault Diagnosis
    Yixiao Liao
    Ruyi Huang
    Jipu Li
    Zhuyun Chen
    Weihua Li
    Chinese Journal of Mechanical Engineering, 2021, 34 (03) : 107 - 116
  • [43] Dynamic Distribution Adaptation Based Transfer Network for Cross Domain Bearing Fault Diagnosis
    Yixiao Liao
    Ruyi Huang
    Jipu Li
    Zhuyun Chen
    Weihua Li
    Chinese Journal of Mechanical Engineering, 2021, 34
  • [44] A Cross Domain Feature Extraction Method based on Transfer Component Analysis for Rolling Bearing Fault Diagnosis
    Chen, Chen
    Li, Zhiheng
    Yang, Jun
    Liang, Bin
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 5622 - 5626
  • [45] Deep Discriminative Clustering and Structural Constraint for Cross-domain Fault Diagnosis of Rotating Machinery
    Wu, Wenbo
    Liu, Yongkui
    Zhang, Lin
    Xu, Xun
    Wang, Lihui
    MANUFACTURING LETTERS, 2023, 35 : 1072 - 1080
  • [46] Cross-domain bearing fault diagnosis with refined composite multiscale fuzzy entropy and the self organizing fuzzy classifier
    Gituku, Esther W.
    Kimotho, James K.
    Njiri, Jackson G.
    ENGINEERING REPORTS, 2021, 3 (03)
  • [47] A New Universal Cross-Domain Bearing Fault Diagnosis Framework With Dynamic Distribution Adaptation Guided by Metric Learning
    Cao, Ximing
    Yang, Ruifeng
    Guo, Chenxia
    Wang, Shichao
    IEEE SENSORS JOURNAL, 2024, 24 (23) : 40038 - 40048
  • [48] A novel sub-label learning mechanism for enhanced cross-domain fault diagnosis of rotating machinery
    Deng, Minqiang
    Deng, Aidong
    Shi, Yaowei
    Liu, Yang
    Xu, Meng
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 225
  • [49] Research on Intelligent Fault Diagnosis of Rolling Bearing Based on Adaptive Resource Allocation Deep Neural Network
    NING, S. H. A. O. H. U. I.
    DU, K. A. N. G. N. I. N. G.
    IEEE ACCESS, 2022, 10 : 62920 - 62931
  • [50] Class-Imbalance Adversarial Transfer Learning Network for Cross-Domain Fault Diagnosis With Imbalanced Data
    Kuang, Jiachen
    Xu, Guanghua
    Tao, Tangfei
    Wu, Qingqiang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71