ISEANet: An interpretable subdomain enhanced adaptive network for unsupervised cross-domain fault diagnosis of rolling bearing

被引:13
|
作者
Liu, Bin [1 ]
Yan, Changfeng [1 ]
Liu, Yaofeng [1 ]
Lv, Ming [1 ]
Huang, Yuan [1 ]
Wu, Lixiao [1 ]
机构
[1] Lanzhou Univ Technol, Sch Mech & Elect Engn, Lanzhou 730050, Peoples R China
基金
中国国家自然科学基金;
关键词
Interpretability; Subdomain enhanced adaptive; Cross -domain fault diagnosis; Physical knowledge; Improved local maximum mean discrepancy; ROTATING MACHINERY; ADAPTATION;
D O I
10.1016/j.aei.2024.102610
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised Domain Adaptation (UDA) has gained widespread application in bearing fault diagnosis across various operational conditions, attributed to its commendable transfer diagnosis efficacy. However, global Domain Adaptation (DA) under the influence of noise interference often overlooks subdomain distribution, leading to local distinctions among multiple categories. To address these challenges, this paper proposes an Interpretable Subdomain Enhanced Adaptive Network (ISEANet), which enhances subdomain representation from key facets: initial sample processing, intermediate feature mapping, and subdomain discrepancy calculation. Firstly, the Sparse Subsegment-guided Noise Reduction (SSNR) layer is formulated to enhance the physical knowledge. Subsequently, Lightweight Multi-Feature Extraction Module (LMFEMod) is designed to comprehensively capture domain discriminable features from local and global perspectives to enhance the coordinated adaptation and interpretability between physical knowledge and feature mapping. Moreover, a novel subdomain metric method, Improved Local Maximum Mean Discrepancy (ILMMD), is proposed. ILMMD introduces a priori probability distributions between different labels, replacing the original hard labels. This modification aims to increase the distance between clustering centers and bridge subdomain gaps during Subdomain Adaptation (SA), and further enhances the reliability of subdomain discrepancy calculations. Comparative tests with other prevalent methods on public and Lanzhou University of Technology (LUT) bearing dataset for the transfer task are conducted, and the results show that ISEANet exhibits excellent cross-domain diagnostic performance.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Unsupervised domain adaptive bearing fault diagnosis based on maximum domain discrepancy
    Wang, Cuixiang
    Wu, Shengkai
    Shao, Xing
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2024, 2024 (01)
  • [32] Unsupervised Joint Subdomain Adaptation Network for Fault Diagnosis
    Wang, Baoqiang
    Wei, Yuan
    Liu, Shulin
    Zhao, Dongfang
    Liu, Xiaoyang
    IEEE SENSORS JOURNAL, 2022, 22 (09) : 8891 - 8903
  • [33] A Transferability-Enhanced and Structural Information Mining Network for Cross-Domain Fault Diagnosis
    Wang, Huaqing
    Zhang, Shikuan
    Hao, Pengyuan
    Wu, Na
    Han, Changkun
    Song, Liuyang
    IEEE SENSORS JOURNAL, 2024, 24 (13) : 21200 - 21210
  • [34] A Compressed Unsupervised Deep Domain Adaptation Model for Efficient Cross-Domain Fault Diagnosis
    Xu, Gaowei
    Huang, Chenxi
    Silva, Daniel Santos da
    Albuquerque, Victor Hugo C. de
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (05) : 6741 - 6749
  • [35] A Dual-View Style Mixing Network for unsupervised cross-domain fault diagnosis with imbalanced data
    Chen, Zixu
    Yu, Wennian
    Wang, Liming
    Ding, Xiaoxi
    Huang, Wenbin
    Shao, Yimin
    KNOWLEDGE-BASED SYSTEMS, 2023, 278
  • [36] A Domain-Adversarial Multi-Graph Convolutional Network for Unsupervised Domain Adaptation Rolling Bearing Fault Diagnosis
    Li, Xinran
    Jin, Wuyin
    Xu, Xiangyang
    Yang, Hao
    SYMMETRY-BASEL, 2022, 14 (12):
  • [37] Cross-domain open-set rolling bearing fault diagnosis based on feature improvement adversarial network under noise condition
    Wang, Haomiao
    Li, Yibin
    Jiang, Mingshun
    Zhang, Faye
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2024, 46 (02) : 5073 - 5085
  • [38] TRANSFER LEARNING ROLLING BEARING FAULT DIAGNOSIS METHOD BASED ON DEEP DOMAIN ADAPTIVE NETWORK
    Liao, Yu
    Geng, Jiahao
    Guo, Li
    Geng, Bing
    Cui, Kun
    Li, Runze
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2025, 21 (01): : 209 - 225
  • [39] Rolling bearing fault diagnosis based on multi-source domain adaptive residual network
    Gao X.
    Zhang Z.
    Gao H.
    Qi Y.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (07): : 290 - 299
  • [40] Multi-layer adaptive convolutional neural network unsupervised domain adaptive bearing fault diagnosis method
    Cui, Jie
    Li, Yanfeng
    Zhang, Qianqian
    Wang, Zhijian
    Du, Wenhua
    Wang, Junyuan
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (08)