ISEANet: An interpretable subdomain enhanced adaptive network for unsupervised cross-domain fault diagnosis of rolling bearing

被引:14
|
作者
Liu, Bin [1 ]
Yan, Changfeng [1 ]
Liu, Yaofeng [1 ]
Lv, Ming [1 ]
Huang, Yuan [1 ]
Wu, Lixiao [1 ]
机构
[1] Lanzhou Univ Technol, Sch Mech & Elect Engn, Lanzhou 730050, Peoples R China
基金
中国国家自然科学基金;
关键词
Interpretability; Subdomain enhanced adaptive; Cross -domain fault diagnosis; Physical knowledge; Improved local maximum mean discrepancy; ROTATING MACHINERY; ADAPTATION;
D O I
10.1016/j.aei.2024.102610
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised Domain Adaptation (UDA) has gained widespread application in bearing fault diagnosis across various operational conditions, attributed to its commendable transfer diagnosis efficacy. However, global Domain Adaptation (DA) under the influence of noise interference often overlooks subdomain distribution, leading to local distinctions among multiple categories. To address these challenges, this paper proposes an Interpretable Subdomain Enhanced Adaptive Network (ISEANet), which enhances subdomain representation from key facets: initial sample processing, intermediate feature mapping, and subdomain discrepancy calculation. Firstly, the Sparse Subsegment-guided Noise Reduction (SSNR) layer is formulated to enhance the physical knowledge. Subsequently, Lightweight Multi-Feature Extraction Module (LMFEMod) is designed to comprehensively capture domain discriminable features from local and global perspectives to enhance the coordinated adaptation and interpretability between physical knowledge and feature mapping. Moreover, a novel subdomain metric method, Improved Local Maximum Mean Discrepancy (ILMMD), is proposed. ILMMD introduces a priori probability distributions between different labels, replacing the original hard labels. This modification aims to increase the distance between clustering centers and bridge subdomain gaps during Subdomain Adaptation (SA), and further enhances the reliability of subdomain discrepancy calculations. Comparative tests with other prevalent methods on public and Lanzhou University of Technology (LUT) bearing dataset for the transfer task are conducted, and the results show that ISEANet exhibits excellent cross-domain diagnostic performance.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Multirepresentation Dynamic Adaptive Network for Cross-Domain Rolling Bearing Fault Diagnosis in Complex Scenarios
    Zeng, Yi
    Sun, Bowen
    Xu, Renyi
    Qi, Guopeng
    Wang, Feiyang
    Zhang, Zhengzhuang
    Wu, Kelin
    Wu, Dazhuan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [2] KMDSAN: A novel method for cross-domain and unsupervised bearing fault diagnosis
    Wu, Shuping
    Shi, Peiming
    Xu, Xuefang
    Yang, Xu
    Li, Ruixiong
    Qiao, Zijian
    KNOWLEDGE-BASED SYSTEMS, 2025, 312
  • [3] Transferable adaptive channel attention module for unsupervised cross-domain fault diagnosis
    Shi, Yaowei
    Deng, Aidong
    Deng, Minqiang
    Xu, Meng
    Liu, Yang
    Ding, Xue
    Li, Jing
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 226
  • [4] Deep Domain Generalization Combining A Priori Diagnosis Knowledge Toward Cross-Domain Fault Diagnosis of Rolling Bearing
    Zheng, Huailiang
    Yang, Yuantao
    Yin, Jiancheng
    Li, Yuqing
    Wang, Rixin
    Xu, Minqiang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [5] A novel multiscale feature adversarial fusion network for unsupervised cross-domain fault diagnosis
    Shi, Yaowei
    Deng, Aidong
    Deng, Minqiang
    Xu, Meng
    Liu, Yang
    Ding, Xue
    MEASUREMENT, 2022, 200
  • [6] Dynamic Reweighted Domain Adaption for Cross-Domain Bearing Fault Diagnosis
    Meng, Yu
    Xuan, Jianping
    Xu, Long
    Liu, Jie
    MACHINES, 2022, 10 (04)
  • [7] Cross-domain fault diagnosis of rolling bearing using similar features-based transfer approach
    Qin, Ai-Song
    Mao, Han-Ling
    Hu, Qin
    MEASUREMENT, 2021, 172
  • [8] Multisource domain factorization network for cross-domain fault diagnosis of rotating machinery: An unsupervised multisource domain adaptation method
    Shi, Yaowei
    Deng, Aidong
    Ding, Xue
    Zhang, Shun
    Xu, Shuo
    Li, Jing
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 164
  • [9] A Domain-Adversarial Multi-Graph Convolutional Network for Unsupervised Domain Adaptation Rolling Bearing Fault Diagnosis
    Li, Xinran
    Jin, Wuyin
    Xu, Xiangyang
    Yang, Hao
    SYMMETRY-BASEL, 2022, 14 (12):
  • [10] Domain Adversarial Transfer Network for Cross-Domain Fault Diagnosis of Rotary Machinery
    Chen, Zhuyun
    He, Guolin
    Li, Jipu
    Liao, Yixiao
    Gryllias, Konstantinos
    Li, Weihua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (11) : 8702 - 8712