Unpaired deep learning for pharmacokinetic parameter estimation from dynamic contrast-enhanced MRI without AIF measurements

被引:2
|
作者
Oh, Gyutaek [1 ]
Moon, Yeonsil [2 ]
Moon, Won-Jin [3 ]
Ye, Jong Chul [4 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Dept Bio & Brain Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[2] Konkuk Univ, Med Ctr, Dept Neurol, 120-1 Neungdong Ro, Seoul 05030, South Korea
[3] Konkuk Univ, Dept Radiol, Med Ctr, 120 1 Neungdong Ro, Seoul 05030, South Korea
[4] Korea Adv Inst Sci & Technol KAIST, Kim Jaechul Grad Sch AI, 291 Daehak Ro, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
Dynamic contrast-enhanced MRI; Unpaired deep learning; Optimal transport; CycleGAN; DCE-MRI; KINETIC-PARAMETERS; SELECTION; CYCLEGAN; TRACER;
D O I
10.1016/j.neuroimage.2024.120571
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
DCE-MRI provides information about vascular permeability and tissue perfusion through the acquisition of pharmacokinetic parameters. However, traditional methods for estimating these pharmacokinetic parameters involve fitting tracer kinetic models, which often suffer from computational complexity and low accuracy due to noisy arterial input function (AIF) measurements. Although some deep learning approaches have been proposed to tackle these challenges, most existing methods rely on supervised learning that requires paired input DCE-MRI and labeled pharmacokinetic parameter maps. This dependency on labeled data introduces significant time and resource constraints and potential noise in the labels, making supervised learning methods often impractical. To address these limitations, we present a novel unpaired deep learning method for estimating pharmacokinetic parameters and the AIF using a physics -driven CycleGAN approach. Our proposed CycleGAN framework is designed based on the underlying physics model, resulting in a simpler architecture with a single generator and discriminator pair. Crucially, our experimental results indicate that our method does not necessitate separate AIF measurements and produces more reliable pharmacokinetic parameters than other techniques.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] DCE@urLAB: a dynamic contrast-enhanced MRI pharmacokinetic analysis tool for preclinical data
    Juan E Ortuño
    María J Ledesma-Carbayo
    Rui V Simões
    Ana P Candiota
    Carles Arús
    Andrés Santos
    BMC Bioinformatics, 14
  • [32] A deep learning model based on self-supervised learning for identifying subtypes of proliferative hepatocellular carcinoma from dynamic contrast-enhanced MRI
    Hui Qu
    Shuairan Zhang
    Xuedan Li
    Yuan Miao
    Yuxi Han
    Ronghui Ju
    Xiaoyu Cui
    Yiling Li
    Insights into Imaging, 16 (1)
  • [33] Dynamic contrast-enhanced MRI differentiates hepatocellular carcinoma from hepatic metastasis of rectal cancer by extracting pharmacokinetic parameters and radiomic features
    Li, Jianzhi
    Xue, Feng
    Xu, Xinghua
    Wang, Qing
    Zhang, Xuexi
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2020, 20 (04) : 3643 - 3652
  • [34] Normalizing Flow-Based Distribution Estimation of Pharmacokinetic Parameters in Dynamic Contrast-Enhanced Magnetic Resonance Imaging
    Fang, Ke
    Wang, Zejun
    Xia, Qi
    Liu, Yingchao
    Wang, Bao
    Cheng, Zhaowei
    Cheng, Jian
    Jin, Xinyu
    Bai, Ruiliang
    Li, Lanjuan
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2024, 71 (03) : 780 - 791
  • [35] Reference region extraction by clustering for the pharmacokinetic analysis of dynamic contrast-enhanced MRI in prostate cancer
    Ikoma, Yoko
    Kishimoto, Riwa
    Tachibana, Yasuhiko
    Omatsu, Tokuhiko
    Kasuya, Goro
    Makishima, Hirokazu
    Higashi, Tatsuya
    Obata, Takayuki
    Tsuji, Hiroshi
    MAGNETIC RESONANCE IMAGING, 2020, 66 : 185 - 192
  • [36] Dynamic contrast enhanced MRI Pharmacokinetic parameter histogram analysis in diagnosis of malignant prostatic lesions
    Ma, X. M.
    Wang, L. L.
    Wang, P.
    Ma, Y. Q.
    Zhang, We W.
    He, J. W.
    Huang, G.
    Zhao, L. P.
    Ren, J. L.
    Shi, Z. Q.
    INTERNATIONAL JOURNAL OF RADIATION RESEARCH, 2022, 20 (02): : 491 - 498
  • [37] The use of error-category mapping in pharmacokinetic model analysis of dynamic contrast-enhanced MRI data
    Gill, Andrew B.
    Anandappa, Gayathri
    Patterson, Andrew J.
    Priest, Andrew N.
    Graves, Martin J.
    Janowitz, Tobias
    Jodrell, Duncan I.
    Eisen, Tim
    Lomas, David J.
    MAGNETIC RESONANCE IMAGING, 2015, 33 (02) : 246 - 251
  • [38] KINETIC MEASURES FOR DISTINGUISHING VULNERABLE FROM STABLE ATHEROSCLEROTIC PLAQUE WITH DYNAMIC CONTRAST-ENHANCED MRI
    Qin, Zengchang
    Wang, Yaping
    Zhang, Wanshu
    Chen, Jianhui
    Wan, Tao
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 3854 - 3858
  • [39] Impact of uncertainty in longitudinal T1 measurements on quantification of dynamic contrast-enhanced MRI
    Aryal, Madhava P.
    Chenevert, Thomas L.
    Cao, Yue
    NMR IN BIOMEDICINE, 2016, 29 (04) : 411 - 419
  • [40] Differentiation of infective from neoplastic brain lesions by dynamic contrast-enhanced MRI
    Mohammad Haris
    Rakesh Kumar Gupta
    Anup Singh
    Nuzhat Husain
    Mazhar Husain
    Chandra Mohan Pandey
    Chhitij Srivastava
    Sanjay Behari
    Ram Kishore Singh Rathore
    Neuroradiology, 2008, 50