Unpaired deep learning for pharmacokinetic parameter estimation from dynamic contrast-enhanced MRI without AIF measurements

被引:2
|
作者
Oh, Gyutaek [1 ]
Moon, Yeonsil [2 ]
Moon, Won-Jin [3 ]
Ye, Jong Chul [4 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Dept Bio & Brain Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[2] Konkuk Univ, Med Ctr, Dept Neurol, 120-1 Neungdong Ro, Seoul 05030, South Korea
[3] Konkuk Univ, Dept Radiol, Med Ctr, 120 1 Neungdong Ro, Seoul 05030, South Korea
[4] Korea Adv Inst Sci & Technol KAIST, Kim Jaechul Grad Sch AI, 291 Daehak Ro, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
Dynamic contrast-enhanced MRI; Unpaired deep learning; Optimal transport; CycleGAN; DCE-MRI; KINETIC-PARAMETERS; SELECTION; CYCLEGAN; TRACER;
D O I
10.1016/j.neuroimage.2024.120571
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
DCE-MRI provides information about vascular permeability and tissue perfusion through the acquisition of pharmacokinetic parameters. However, traditional methods for estimating these pharmacokinetic parameters involve fitting tracer kinetic models, which often suffer from computational complexity and low accuracy due to noisy arterial input function (AIF) measurements. Although some deep learning approaches have been proposed to tackle these challenges, most existing methods rely on supervised learning that requires paired input DCE-MRI and labeled pharmacokinetic parameter maps. This dependency on labeled data introduces significant time and resource constraints and potential noise in the labels, making supervised learning methods often impractical. To address these limitations, we present a novel unpaired deep learning method for estimating pharmacokinetic parameters and the AIF using a physics -driven CycleGAN approach. Our proposed CycleGAN framework is designed based on the underlying physics model, resulting in a simpler architecture with a single generator and discriminator pair. Crucially, our experimental results indicate that our method does not necessitate separate AIF measurements and produces more reliable pharmacokinetic parameters than other techniques.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Impact of fitting algorithms on errors of parameter estimates in dynamic contrast-enhanced MRI
    Debus, C.
    Floca, R.
    Noerenberg, D.
    Abdollahi, A.
    Ingrisch, M.
    PHYSICS IN MEDICINE AND BIOLOGY, 2017, 62 (24) : 9322 - 9340
  • [22] Convolutional Neural Networks for Direct Inference of Pharmacokinetic Parameters: Application to Stroke Dynamic Contrast-Enhanced MRI
    Ulas, Cagdas
    Das, Dhritiman
    Thrippleton, Michael J.
    Valdes Hernandez, Maria del C.
    Armitage, Paul A.
    Makin, Stephen D.
    Wardlaw, Joanna M.
    Menze, Bjoern H.
    FRONTIERS IN NEUROLOGY, 2019, 9
  • [23] An Efficient Calculation Method for Pharmacokinetic Parameters in Brain Permeability Study Using Dynamic Contrast-Enhanced MRI
    Wang, Chunhao
    Yin, Fang-Fang
    Chang, Zheng
    MAGNETIC RESONANCE IN MEDICINE, 2016, 75 (02) : 739 - 749
  • [24] Influence of B1-Inhomogeneity on Pharmacokinetic Modeling of Dynamic Contrast-Enhanced MRI: A Simulation Study
    Park, Bumwoo
    Choi, Byung Se
    Sung, Yu Sub
    Woo, Dong-Cheol
    Shim, Woo Hyun
    Kim, Kyung Won
    Choi, Yoon Seok
    Pae, Sang Joon
    Suh, Ji-Yeon
    Cho, Hyungjoon
    Kim, Jeong Kon
    KOREAN JOURNAL OF RADIOLOGY, 2017, 18 (04) : 585 - 596
  • [25] Dynamic contrast-enhanced MRI of prostate cancer at 3 T: A study of pharmacokinetic parameters
    Ocak, Iclal
    Bernardo, Marcelino
    Metzger, Greg
    Barrett, Tristan
    Pinto, Peter
    Albert, Paul S.
    Choyke, Peter L.
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2007, 189 (04) : W192 - W201
  • [26] Statistical comparison of dynamic contrast-enhanced MRI pharmacokinetic models in human breast cancer
    Li, Xia
    Welch, E. Brian
    Chakravarthy, A. Bapsi
    Xu, Lei
    Arlinghaus, Lori R.
    Farley, Jaime
    Mayer, Ingrid A.
    Kelley, Mark C.
    Meszoely, Ingrid M.
    Means-Powell, Julie
    Abramson, Vandana G.
    Grau, Ana M.
    Gore, John C.
    Yankeelov, Thomas E.
    MAGNETIC RESONANCE IN MEDICINE, 2012, 68 (01) : 261 - 271
  • [27] Arterial input function estimation compensating for inflow and partial voluming in dynamic contrast-enhanced MRI
    Tseng, Chih-Hsien
    Nagtegaal, Martijn A.
    van Osch, Matthias J. P.
    Jaspers, Jaap
    Romero, Alejandra Mendez
    Wielopolski, Piotr
    Smits, Marion
    Vos, Frans M.
    NMR IN BIOMEDICINE, 2024, 37 (12)
  • [28] TDM-STARGAN: STARGAN USING TIME DIFFERENCE MAP TO GENERATE DYNAMIC CONTRAST-ENHANCED MRI FROM ULTRAFAST DYNAMIC CONTRAST-ENHANCED MRI
    Oh, Young-tack
    Ko, Eunsook
    Park, Hyunjin
    2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,
  • [29] Pharmacokinetic analysis based on dynamic contrast-enhanced MRI for evaluating tumor response to preoperative therapy for oral cancer
    Chikui, Toru
    Kitamoto, Erina
    Kawano, Shintaro
    Sugiura, Tsuyoshi
    Obara, Makoto
    Simonetti, Arjan W.
    Hatakenaka, Masamitsu
    Matsuo, Yoshio
    Koga, Shoichi
    Ohga, Masahiro
    Nakamura, Katsumasa
    Yoshiura, Kazunori
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2012, 36 (03) : 589 - 597
  • [30] DCE@urLAB: a dynamic contrast-enhanced MRI pharmacokinetic analysis tool for preclinical data
    Ortuno, Juan E.
    Ledesma-Carbayo, Maria J.
    Simoes, Rui V.
    Candiota, Ana P.
    Arus, Carles
    Santos, Andres
    BMC BIOINFORMATICS, 2013, 14