Unpaired deep learning for pharmacokinetic parameter estimation from dynamic contrast-enhanced MRI without AIF measurements

被引:2
|
作者
Oh, Gyutaek [1 ]
Moon, Yeonsil [2 ]
Moon, Won-Jin [3 ]
Ye, Jong Chul [4 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Dept Bio & Brain Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[2] Konkuk Univ, Med Ctr, Dept Neurol, 120-1 Neungdong Ro, Seoul 05030, South Korea
[3] Konkuk Univ, Dept Radiol, Med Ctr, 120 1 Neungdong Ro, Seoul 05030, South Korea
[4] Korea Adv Inst Sci & Technol KAIST, Kim Jaechul Grad Sch AI, 291 Daehak Ro, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
Dynamic contrast-enhanced MRI; Unpaired deep learning; Optimal transport; CycleGAN; DCE-MRI; KINETIC-PARAMETERS; SELECTION; CYCLEGAN; TRACER;
D O I
10.1016/j.neuroimage.2024.120571
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
DCE-MRI provides information about vascular permeability and tissue perfusion through the acquisition of pharmacokinetic parameters. However, traditional methods for estimating these pharmacokinetic parameters involve fitting tracer kinetic models, which often suffer from computational complexity and low accuracy due to noisy arterial input function (AIF) measurements. Although some deep learning approaches have been proposed to tackle these challenges, most existing methods rely on supervised learning that requires paired input DCE-MRI and labeled pharmacokinetic parameter maps. This dependency on labeled data introduces significant time and resource constraints and potential noise in the labels, making supervised learning methods often impractical. To address these limitations, we present a novel unpaired deep learning method for estimating pharmacokinetic parameters and the AIF using a physics -driven CycleGAN approach. Our proposed CycleGAN framework is designed based on the underlying physics model, resulting in a simpler architecture with a single generator and discriminator pair. Crucially, our experimental results indicate that our method does not necessitate separate AIF measurements and produces more reliable pharmacokinetic parameters than other techniques.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Modeling Dynamic Contrast-Enhanced MRI Data with a Constrained Local AIF
    Duan, Chong
    Kallehauge, Jesper F.
    Perez-Torres, Carlos J.
    Bretthorst, G. Larry
    Beeman, Scott C.
    Tanderup, Kari
    Ackerman, Joseph J. H.
    Garbow, Joel R.
    MOLECULAR IMAGING AND BIOLOGY, 2018, 20 (01) : 150 - 159
  • [2] Patient-specific pharmacokinetic parameter estimation on dynamic contrast-enhanced MRI of prostate: Preliminary evaluation of a novel AIF-free estimation method
    Ginsburg, Shoshana B.
    Taimen, Pekka
    Merisaari, Harri
    Vainio, Paula
    Bostrom, Peter J.
    Aronen, Hannu J.
    Jambor, Ivan
    Madabhushi, Anant
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2016, 44 (06) : 1405 - 1414
  • [3] Estimation of the capillary level input function for dynamic contrast-enhanced MRI of the breast using a deep learning approach
    Bae, Jonghyun
    Huang, Zhengnan
    Knoll, Florian
    Geras, Krzysztof
    Sood, Terlika Pandit
    Feng, Li
    Heacock, Laura
    Moy, Linda
    Kim, Sungheon Gene
    MAGNETIC RESONANCE IN MEDICINE, 2022, 87 (05) : 2536 - 2550
  • [4] Uncertainty estimation in dynamic contrast-enhanced MRI
    Garpebring, Anders
    Brynolfsson, Patrik
    Yu, Jun
    Wirestam, Ronnie
    Johansson, Adam
    Asklund, Thomas
    Karlsson, Mikael
    MAGNETIC RESONANCE IN MEDICINE, 2013, 69 (04) : 992 - 1002
  • [5] Blind estimation of the arterial input function in dynamic contrast-enhanced MRI using purity maximization
    Lin, Yu-Chun
    Chan, Tsung-Han
    Chi, Chong-Yung
    Ng, Shu-Hang
    Liu, Hao-Li
    Wei, Kuo-Chen
    Wai, Yau-Yau
    Wang, Chun-Chieh
    Wang, Jiun-Jie
    MAGNETIC RESONANCE IN MEDICINE, 2012, 68 (05) : 1439 - 1449
  • [6] Diagnosis of Spinal Lesion Using Heuristic and Pharmacokinetic Parameter Measured by Dynamic Contrast-Enhanced MRI
    Lang, Ning
    Yuan, Huishu
    Yu, Hon J.
    Su, Min-Ying
    ACADEMIC RADIOLOGY, 2017, 24 (07) : 867 - 875
  • [7] Dynamic Contrast-Enhanced MRI in Mice: An Investigation of Model Parameter Uncertainties
    Rukat, Tammo
    Walker-Samuel, Simon
    Reinsberg, Stefan A.
    MAGNETIC RESONANCE IN MEDICINE, 2015, 73 (05) : 1979 - 1987
  • [8] Combination of deep learning reconstruction and quantification for dynamic contrast-enhanced (DCE) MRI
    Jing, Juntong
    Mekhanik, Anthony
    Schellenberg, Melanie
    Murray, Victor
    Cohen, Ouri
    Otazo, Ricardo
    MAGNETIC RESONANCE IMAGING, 2025, 117
  • [9] T1 Mapping, AIF and Pharmacokinetic Parameter Extraction from Dynamic Contrast Enhancement MRI Data
    Liberman, Gilad
    Louzoun, Yoram
    Colliot, Olivier
    Ben Bashat, Dafna
    MULTIMODAL BRAIN IMAGE ANALYSIS, 2011, 7012 : 76 - +
  • [10] Efficient estimation of pharmacokinetic parameters from breast dynamic contrast-enhanced MRI based on a convolutional neural network for predicting molecular subtypes
    Zhang, Liangliang
    Fan, Ming
    Li, Lihua
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (24)