Neutrosophic geometric distribution: Data generation under uncertainty and practical applications

被引:1
作者
Aslam, Muhammad [1 ]
Albassam, Mohammed [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Stat, Jeddah 215511, Saudi Arabia
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 06期
关键词
simulation; algorithm; neutrosophic data; classical statistics; industry;
D O I
10.3934/math.2024796
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper introduces the geometric distribution in the context of neutrosophic statistics. The research outlines the essential properties of this new distribution and introduces novel algorithms for generating imprecise geometric data. The study explores the practical applications of this distribution in the industry, highlighting differences in data generated under deterministic and indeterminate conditions using detailed tables, simulation studies, and real - world applications. The results indicate that the level of uncertainty has a substantial impact on data generation from the geometric distribution. These findings suggest updating classical statistical algorithms to better handle the generation of imprecise data. Therefore, decision - makers should exercise caution when using data from the geometric distribution in uncertain environments.
引用
收藏
页码:16436 / 16452
页数:17
相关论文
共 25 条
[1]   On Classical and Bayesian Reliability of Systems Using Bivariate Generalized Geometric Distribution [J].
Abbas, Nasir .
JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2023, 22 (03) :151-169
[2]   Uniform-Geometric distribution [J].
Akdogan, Yunus ;
Kus, Coskun ;
Asgharzadeh, Akbar ;
Kinaci, Ismail ;
Sharafi, Fatemeh .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (09) :1754-1770
[3]   A New Generalization of Geometric Distribution with Properties and Applications [J].
Altun, Emrah .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2020, 49 (03) :793-807
[4]   Uncertainty-driven generation of neutrosophic random variates from the Weibull distribution [J].
Aslam, Muhammad .
JOURNAL OF BIG DATA, 2023, 10 (01)
[5]   Algorithm for generating neutrosophic data using accept-reject method [J].
Aslam, Muhammad ;
Alamri, Faten S. .
JOURNAL OF BIG DATA, 2023, 10 (01)
[6]   Simulating imprecise data: sine-cosine and convolution methods with neutrosophic normal distribution [J].
Aslam, Muhammad .
JOURNAL OF BIG DATA, 2023, 10 (01)
[7]  
Beria M., 2005, Confidence interval estimation for a geometric distribution, P1924, DOI [10.25669/too9-2lgp, DOI 10.25669/TOO9-2LGP]
[8]  
Bertoli-Barsotti L., 2015, International Journal of Mathematical Models and Methods in Applied Sciences, V9, P315
[9]  
Chen F. Y., 2013, Dissertations, V2013, P350
[10]   Scale Effect and Anisotropy Analyzed for Neutrosophic Numbers of Rock Joint Roughness Coefficient Based on Neutrosophic Statistics [J].
Chen, Jiqian ;
Ye, Jun ;
Du, Shigui .
SYMMETRY-BASEL, 2017, 9 (10)