Counting triangles in graphs without vertex disjoint odd cycles

被引:0
作者
Hou, Jianfeng [1 ]
Yang, Caihong [1 ]
Zeng, Qinghou [1 ]
机构
[1] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350003, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized Tur & aacute; n number; Extremal graph; Cycle; GENERALIZED TURAN PROBLEMS; MAXIMUM NUMBER; PENTAGONS; COPIES;
D O I
10.1016/j.disc.2024.114015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given two graphs H and F, the maximum possible number of copies of H in an F-free graph on n vertices is denoted by ex(n, H, F). Let l <middle dot> F denote t vertex disjoint copies of F. Gy6ri and Li (2012) obtained results on ex(n, C-3, C2k+1), which was further improved by Alon and Shikhelman (2016). In this paper, we determine the exact value of ex(n, C-3, B <middle dot> C2k+1) and its extremal graph for all l >= 2 and large n. (c) 2024 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 27 条
  • [1] Many T copies in H-free graphs
    Alon, Noga
    Shikhelman, Clara
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2016, 121 : 146 - 172
  • [2] Pentagons vs. triangles
    Bollobas, Bela
    Gyori, Ervin
    [J]. DISCRETE MATHEMATICS, 2008, 308 (19) : 4332 - 4336
  • [3] Bondy J. A., 1974, Journal of Combinatorial Theory, Series B, V16, P97, DOI 10.1016/0095-8956(74)90052-5
  • [4] A Bound on the Number of Edges in Graphs Without an Even Cycle
    Bukh, Boris
    Jiang, Zilin
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2017, 26 (01) : 1 - 15
  • [5] Erdo P., 1962, Arch. Math., V13, P222
  • [6] Erdos P., 1959, ACTA MATH ACAD SCI H, V10, P337, DOI DOI 10.1007/BF02024498
  • [7] Erds P., 1984, GRAPH THEORY COMBINA, P1
  • [8] Erds P., 1962, MAGYAR TUD AKAD MAT, V7, P459
  • [9] Extremal Numbers for Odd Cycles
    Fueredi, Zoltan
    Gunderson, David S.
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2015, 24 (04) : 641 - 645
  • [10] On 3-uniform hypergraphs without a cycle of a given length
    Furedi, Zoltan
    Ozkahya, Lale
    [J]. DISCRETE APPLIED MATHEMATICS, 2017, 216 : 582 - 588