Bayesian mixed model for survival data with semicompeting risks based on the Clayton copula

被引:0
作者
Patino, Elizabeth Gonzalez [1 ]
Tunes, Gisela [2 ]
Tanaka, Nelson Ithiro [2 ]
机构
[1] Inst Butantan, Clin Trials & Pharmacovigilance Ctr, Sao Paulo, Brazil
[2] Univ Sao Paulo, Stat Dept, Sao Paulo, Brazil
关键词
Semicompeting risks; Archimedean copulas; Clayton copula; data augumentation; chronic kidney disease; mixed model; SEMI-COMPETING RISKS; FRAILTY MODELS; DISTRIBUTIONS;
D O I
10.1214/24-BJPS606
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Motivated by a chronic kidney disease dataset, we propose a Bayesian model for clustered semicompeting risks data based on Archimedean copulas, allowing for treatment switching. We consider the modeling of both independent and clustered observations. For clustered data, random effects are included to consider the dependence among observations in the same group. For the Clayton copula, we provide theoretical results for the posterior distribution when improper priors are used. A simulation study was conducted to evaluate the performance of the proposed model. Finally, the results of the analysis of chronic kidney disease data are discussed.
引用
收藏
页码:302 / 320
页数:19
相关论文
共 50 条
  • [21] A two-level copula joint model for joint analysis of longitudinal and competing risks data
    Lu, Xiaoming
    Chekouo, Thierry
    Shen, Hua
    de Leon, Alexander R.
    [J]. STATISTICS IN MEDICINE, 2023, : 1909 - 1930
  • [22] A dependent stress-strength interference model based on mixed copula function
    Gao, Jianxiong
    An, Zongwen
    Liu, Bo
    [J]. JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2016, 30 (10) : 4443 - 4446
  • [23] A Semi-parametric Transformation Frailty Model for Semi-competing Risks Survival Data
    Jiang, Fei
    Haneuse, Sebastien
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2017, 44 (01) : 112 - 129
  • [24] Bayesian bivariate generalized Lindley model for survival data with a cure fraction
    Martinez, Edson Z.
    Achar, Jorge A.
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2014, 117 (02) : 145 - 157
  • [25] Copula-based inference for bivariate survival data with left truncation and dependent censoring
    Deresa, N. W.
    Van Keilegom, I.
    Antonio, K.
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2022, 107 : 1 - 21
  • [26] Flexible Bayesian semiparametric mixed-effects model for skewed longitudinal data
    Ferede, Melkamu M.
    Dagne, Getachew A.
    Mwalili, Samuel M.
    Bilchut, Workagegnehu H.
    Engida, Habtamu A.
    Karanja, Simon M.
    [J]. BMC MEDICAL RESEARCH METHODOLOGY, 2024, 24 (01)
  • [27] Flexible Bayesian semiparametric mixed-effects model for skewed longitudinal data
    Melkamu M. Ferede
    Getachew A. Dagne
    Samuel M. Mwalili
    Workagegnehu H. Bilchut
    Habtamu A. Engida
    Simon M. Karanja
    [J]. BMC Medical Research Methodology, 24
  • [28] Copula-based mixed models for bivariate rainfall data: an empirical study in regression perspective
    Serinaldi, Francesco
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2009, 23 (05) : 677 - 693
  • [29] Two-stage pseudo maximum likelihood estimation of semiparametric copula-based regression models for semi-competing risks data
    Arachchige, Sakie J.
    Chen, Xinyuan
    Zhou, Qian M.
    [J]. LIFETIME DATA ANALYSIS, 2025, 31 (01) : 52 - 75
  • [30] Multi-parameter correlation analysis based on mixed Copula model for aluminum reduction cell
    [J]. Yi, J. (laoyifrcq@163.com), 1600, Materials China (65): : 1327 - 1332