The general divisor problem of higher moments of coefficients attached to the Dedekind zeta function

被引:5
作者
Hua, Guodong [1 ,2 ,3 ]
机构
[1] Weinan Normal Univ, Sch Math & Stat, Weinan 714099, Shaanxi, Peoples R China
[2] Weinan Normal Univ, Qindong Math Res Inst, Weinan 714099, Shaaxi, Peoples R China
[3] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
关键词
Non-normal cubic field; Dekekind zeta function; Divisor problem; FOURIER COEFFICIENTS; PLANCHEREL MEASURES; INTEGRAL IDEALS; EULER PRODUCTS; CUSP FORMS; NUMBER; CLASSIFICATION; FUNCTORIALITY; SQUARE; SERIES;
D O I
10.1007/s11139-024-00907-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{3}$$\end{document} be a non-normal cubic extension over Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}$$\end{document}. And let tau kK3(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _{k}<^>{K_{3}}(n)$$\end{document} denote the k-dimensional divisor function in the number field K3/Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{3}/\mathbb {Q}$$\end{document}. In this paper, we investigate the higher moments of the coefficients attached to the Dedekind zeta function over sum of two squares of the form & sum;n12+n22 <= x(tau kK3(n12+n22))l,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \sum _{n_{1}<^>{2}+n_{2}<^>{2}\le x}(\tau _{k}<^>{K_{3}}(n_{1}<^>{2}+n_{2}<^>{2}))<^>{l}, \end{aligned}$$\end{document}where n1,n2 is an element of Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_{1}, n_{2}\in \mathbb {Z}$$\end{document}, and k >= 2,l >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2, l\ge 2$$\end{document} are any fixed integers.
引用
收藏
页码:573 / 592
页数:20
相关论文
共 44 条
[1]   DECOUPLING, EXPONENTIAL SUMS AND THE RIEMANN ZETA FUNCTION [J].
Bourgain, J. .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 30 (01) :205-224
[2]   ON THE NUMBER OF INTEGRAL IDEALS IN GALOIS EXTENSIONS [J].
CHANDRASEKHARAN, K ;
GOOD, A .
MONATSHEFTE FUR MATHEMATIK, 1983, 95 (02) :99-109
[3]   THE APPROXIMATE FUNCTIONAL EQUATION FOR A CLASS OF ZETA-FUNCTIONS [J].
CHANDRASEKHARAN, K ;
NARASIMHAN, R .
MATHEMATISCHE ANNALEN, 1963, 152 (01) :30-64
[4]   LEVEL-RAISING AND SYMMETRIC POWER FUNCTORIALITY, III [J].
Clozel, Laurent ;
Thorne, Jack A. .
DUKE MATHEMATICAL JOURNAL, 2017, 166 (02) :325-402
[5]   Level raising and symmetric power functoriality, II [J].
Clozel, Laurent ;
Thorne, Jack A. .
ANNALS OF MATHEMATICS, 2015, 181 (01) :303-359
[6]   Level-raising and symmetric power functoriality, I [J].
Clozel, Laurent ;
Thorne, Jack A. .
COMPOSITIO MATHEMATICA, 2014, 150 (05) :729-748
[7]  
Deligne P, 1974, PUBL MATH-PARIS, V43, P273
[8]   Automorphy of Symm5(GL(2)) and base change [J].
Dieulefait, Luis .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (04) :619-656
[9]  
Fomenko OM., 2008, J. Math. Sci. (N. Y.), V150, P2115, DOI [10.1007/s10958-008-0126-9, DOI 10.1007/S10958-008-0126-9]
[10]  
GELBART S, 1978, ANN SCI ECOLE NORM S, V11, P471