A Deep Learning Approach for Stochastic Structural Plane Generation Based on Denoising Diffusion Probabilistic Models

被引:0
作者
Meng, Han [1 ]
Qi, Xiaoyu [1 ]
Mei, Gang [1 ]
机构
[1] China Univ Geosci Beijing, Sch Engn & Technol, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
rock mass; stochastic structural planes; Monte Carlo method; deep learning; denoising diffusion probabilistic model (DDPM); TERRESTRIAL DIGITAL PHOTOGRAMMETRY; DISCONTINUITY ORIENTATION; FRACTURE SYSTEMS; ROCK; GEOMETRY;
D O I
10.3390/math12131997
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The stochastic structural plane of a rock mass is the key factor controlling the stability of rock mass. Obtaining the distribution of stochastic structural planes within a rock mass is crucial for analyzing rock mass stability and supporting rock slopes effectively. The conventional Monte Carlo method generates each parameter of stochastic structural planes separately without considering the correlation between the parameters. To address the above problem, this study novelly uses the denoising diffusion probabilistic model (DDPM) to generate stochastic structural planes. DDPM belongs to the deep generative model, which can generate stochastic structural planes without assuming the probability distribution of stochastic structural planes in advance. It takes structural plane parameters as an integral input into the model and can automatically capture the correlations between structural plane parameters during generation. This idea has been used for stochastic structural plane generation of the Oernlia slope in the eastern part of Straumsvatnet Lake, Nordland County, north-central Norway. The accuracy was verified by descriptive statistics (i.e., histogram, box plot, cumulative distribution curve), similarity measures (i.e., mean square error, KL divergence, JS divergence, Wasserstein distance, Euclidean distance), error analysis, and the linear regression plot. Moreover, the linear regression plots between the dip direction and the dip angle verified that DDPM can effectively and automatically capture the correlation between parameters.
引用
收藏
页数:22
相关论文
共 54 条
[1]   State-of-the-art in artificial neural network applications: A survey [J].
Abiodun, Oludare Isaac ;
Jantan, Aman ;
Omolara, Abiodun Esther ;
Dada, Kemi Victoria ;
Mohamed, Nachaat AbdElatif ;
Arshad, Humaira .
HELIYON, 2018, 4 (11)
[2]   Numerical modeling of discontinuous rock slopes utilizing the 3DDGM (three-dimensional discontinuity geometrical modeling) method [J].
Azarafza, Mohammad ;
Asghari-Kaljahi, Ebrahim ;
Akgun, Haluk .
BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2017, 76 (03) :989-1007
[3]   Analyzing data quality issues in research information systems via data profiling [J].
Azeroual, Otmane ;
Saake, Gunter ;
Schallehn, Eike .
INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT, 2018, 41 :50-56
[4]  
Chan Y H, 2003, Singapore Med J, V44, P614
[5]   Structural characteristics of landslide failure boundaries using three-dimensional point clouds: a case study of the Zhaobiyan landslide, China [J].
Cui, Shenghua ;
Liang, Yufei ;
Pei, Xiangjun ;
Luo, Luguang ;
Yang, Qingwen ;
Zhu, Ling .
BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2023, 82 (04)
[6]  
Darvell L.E., 2021, Masters Thesis
[7]   The correlation between reading and mathematics ability at age twelve has a substantial genetic component [J].
Davis, Oliver S. P. ;
Band, Gavin ;
Pirinen, Matti ;
Haworth, Claire M. A. ;
Meaburn, Emma L. ;
Kovas, Yulia ;
Harlaar, Nicole ;
Docherty, Sophia J. ;
Hanscombe, Ken B. ;
Trzaskowski, Maciej ;
Curtis, Charles J. C. ;
Strange, Amy ;
Freeman, Colin ;
Bellenguez, Celine ;
Su, Zhan ;
Pearson, Richard ;
Vukcevic, Damjan ;
Langford, Cordelia ;
Deloukas, Panos ;
Hunt, Sarah ;
Gray, Emma ;
Dronov, Serge ;
Potter, Simon C. ;
Tashakkori-Ghanbaria, Avazeh ;
Edkins, Sarah ;
Bumpstead, Suzannah J. ;
Blackwell, Jenefer M. ;
Bramon, Elvira ;
Brown, Matthew A. ;
Casas, Juan P. ;
Corvin, Aiden ;
Duncanson, Audrey ;
Jankowski, Janusz A. Z. ;
Markus, Hugh S. ;
Mathew, Christopher G. ;
Palmer, Colin N. A. ;
Rautanen, Anna ;
Sawcer, Stephen J. ;
Trembath, Richard C. ;
Viswanathan, Ananth C. ;
Wood, Nicholas W. ;
Barroso, Ines ;
Peltonen, Leena ;
Dale, Philip S. ;
Petrill, Stephen A. ;
Schalkwyk, Leonard S. ;
Craig, Ian W. ;
Lewis, Cathryn M. ;
Price, Thomas S. ;
Donnelly, Peter .
NATURE COMMUNICATIONS, 2014, 5
[8]   Deep learning for molecular design-a review of the state of the art [J].
Elton, Daniel C. ;
Boukouvalas, Zois ;
Fuge, Mark D. ;
Chung, Peter W. .
MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2019, 4 (04) :828-849
[9]   Advanced Geostructural Survey Methods Applied to Rock Mass Characterization [J].
Ferrero, A. M. ;
Forlani, G. ;
Roncella, R. ;
Voyat, H. I. .
ROCK MECHANICS AND ROCK ENGINEERING, 2009, 42 (04) :631-665
[10]   Enhancing Generative Models via Quantum Correlations [J].
Gao, Xun ;
Anschuetz, Eric R. ;
Wang, Sheng-Tao ;
Cirac, J. Ignacio ;
Lukin, Mikhail D. .
PHYSICAL REVIEW X, 2022, 12 (02)