Electrical transport in nanostructured Ni3Al at low temperatures

被引:0
作者
Zhu, Dongdong [1 ]
Dai, Fei [1 ]
Lei, Haile [1 ]
机构
[1] China Acad Engn Phys, Res Ctr Laser Fus, Mianyang 621900, Peoples R China
基金
中国国家自然科学基金;
关键词
electron transport; magnetic materials; phase transition; Ni3Al; TRANSITION; NANOPARTICLES; SUPPRESSION;
D O I
10.1088/1361-6463/ad5c7a
中图分类号
O59 [应用物理学];
学科分类号
摘要
The electrical resistivity in nanostructured Ni3Al has been discriminated to be dominated fully by the electron-magnon scattering with spin fluctuations and evolve in the form of T-5/3 and T-3/2 below and above its Curie temperature. In addition to doping into gamma'-Ni3Al nanophases, excessive Ni atoms are demonstrated to aggregate at the cores of Ni3Al so that some gamma-Ni nanophases are embedded in the gamma'-Ni3Al ones for forming the core/shell nanostructure. The itinerant electrons from gamma'-Ni3Al nanophases is further suggested to wander around the phonons in both gamma-Ni and gamma'-Ni3Al nanophases for screening the electron-phonon interactions. Consequently, the conduction electrons are scattered largely by spin fluctuations in gamma'-Ni3Al shells to suppress the contribution of phonons to the electron transport in nanostructured Ni3Al.
引用
收藏
页数:7
相关论文
共 38 条
[1]   Anomalous positive magnetoresistance at low temperatures in nanocrystalline Ni3Al [J].
Abhyankar, A. C. ;
Kaul, S. N. .
APPLIED PHYSICS LETTERS, 2006, 88 (19)
[2]   Metallic quantum ferromagnets [J].
Brando, M. ;
Belitz, D. ;
Grosche, F. M. ;
Kirkpatrick, T. R. .
REVIEWS OF MODERN PHYSICS, 2016, 88 (02)
[3]   TIGHT-BINDING POTENTIALS FOR TRANSITION-METALS AND ALLOYS [J].
CLERI, F ;
ROSATO, V .
PHYSICAL REVIEW B, 1993, 48 (01) :22-33
[4]  
Coey J.M., 2010, Magnetism and Magnetic Materials
[5]  
D'Santhoshini BA, 2004, J MAGN MAGN MATER, V272, P493, DOI 10.1016/j.jmmm.2003.12.485
[6]  
Delahaye D., 2019, Simulated Annealing: From Basics to Applications, 135
[7]   Opportunities and challenges for spintronics in the microelectronics industry [J].
Dieny, B. ;
Prejbeanu, I. L. ;
Garello, K. ;
Gambardella, P. ;
Freitas, P. ;
Lehndorff, R. ;
Raberg, W. ;
Ebels, U. ;
Demokritov, S. O. ;
Akerman, J. ;
Deac, A. ;
Pirro, P. ;
Adelmann, C. ;
Anane, A. ;
Chumak, A. V. ;
Hirohata, A. ;
Mangin, S. ;
Valenzuela, Sergio O. ;
Onbasli, M. Cengiz ;
D'Aquino, M. ;
Prenat, G. ;
Finocchio, G. ;
Lopez-Diaz, L. ;
Chantrell, R. ;
Chubykalo-Fesenko, O. ;
Bortolotti, P. .
NATURE ELECTRONICS, 2020, 3 (08) :446-459
[8]   Magnetocaloric effect: From materials research to refrigeration devices [J].
Franco, V. ;
Blazquez, J. S. ;
Ipus, J. J. ;
Law, J. Y. ;
Moreno-Ramirez, L. M. ;
Conde, A. .
PROGRESS IN MATERIALS SCIENCE, 2018, 93 :112-232
[9]   Three-dimensional magnetic recording [J].
Greaves, Simon .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2023, 588
[10]   Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient [J].
Gutfleisch, Oliver ;
Willard, Matthew A. ;
Bruck, Ekkes ;
Chen, Christina H. ;
Sankar, S. G. ;
Liu, J. Ping .
ADVANCED MATERIALS, 2011, 23 (07) :821-842