Electrical transport in nanostructured Ni3Al at low temperatures

被引:0
作者
Zhu, Dongdong [1 ]
Dai, Fei [1 ]
Lei, Haile [1 ]
机构
[1] China Acad Engn Phys, Res Ctr Laser Fus, Mianyang 621900, Peoples R China
基金
中国国家自然科学基金;
关键词
electron transport; magnetic materials; phase transition; Ni3Al; TRANSITION; NANOPARTICLES; SUPPRESSION;
D O I
10.1088/1361-6463/ad5c7a
中图分类号
O59 [应用物理学];
学科分类号
摘要
The electrical resistivity in nanostructured Ni3Al has been discriminated to be dominated fully by the electron-magnon scattering with spin fluctuations and evolve in the form of T-5/3 and T-3/2 below and above its Curie temperature. In addition to doping into gamma'-Ni3Al nanophases, excessive Ni atoms are demonstrated to aggregate at the cores of Ni3Al so that some gamma-Ni nanophases are embedded in the gamma'-Ni3Al ones for forming the core/shell nanostructure. The itinerant electrons from gamma'-Ni3Al nanophases is further suggested to wander around the phonons in both gamma-Ni and gamma'-Ni3Al nanophases for screening the electron-phonon interactions. Consequently, the conduction electrons are scattered largely by spin fluctuations in gamma'-Ni3Al shells to suppress the contribution of phonons to the electron transport in nanostructured Ni3Al.
引用
收藏
页数:7
相关论文
共 38 条
  • [1] Anomalous positive magnetoresistance at low temperatures in nanocrystalline Ni3Al
    Abhyankar, A. C.
    Kaul, S. N.
    [J]. APPLIED PHYSICS LETTERS, 2006, 88 (19)
  • [2] Metallic quantum ferromagnets
    Brando, M.
    Belitz, D.
    Grosche, F. M.
    Kirkpatrick, T. R.
    [J]. REVIEWS OF MODERN PHYSICS, 2016, 88 (02)
  • [3] TIGHT-BINDING POTENTIALS FOR TRANSITION-METALS AND ALLOYS
    CLERI, F
    ROSATO, V
    [J]. PHYSICAL REVIEW B, 1993, 48 (01): : 22 - 33
  • [4] Coey J. M., 2010, Magnetism and magnetic materials, DOI 10.1017/CBO9780511845000
  • [5] D'Santhoshini BA, 2004, J MAGN MAGN MATER, V272, P493, DOI 10.1016/j.jmmm.2003.12.485
  • [6] Delahaye D., 2019, Simulated Annealing: From Basics to Applications Handbook of Metaheuristics
  • [7] Opportunities and challenges for spintronics in the microelectronics industry
    Dieny, B.
    Prejbeanu, I. L.
    Garello, K.
    Gambardella, P.
    Freitas, P.
    Lehndorff, R.
    Raberg, W.
    Ebels, U.
    Demokritov, S. O.
    Akerman, J.
    Deac, A.
    Pirro, P.
    Adelmann, C.
    Anane, A.
    Chumak, A. V.
    Hirohata, A.
    Mangin, S.
    Valenzuela, Sergio O.
    Onbasli, M. Cengiz
    D'Aquino, M.
    Prenat, G.
    Finocchio, G.
    Lopez-Diaz, L.
    Chantrell, R.
    Chubykalo-Fesenko, O.
    Bortolotti, P.
    [J]. NATURE ELECTRONICS, 2020, 3 (08) : 446 - 459
  • [8] Magnetocaloric effect: From materials research to refrigeration devices
    Franco, V.
    Blazquez, J. S.
    Ipus, J. J.
    Law, J. Y.
    Moreno-Ramirez, L. M.
    Conde, A.
    [J]. PROGRESS IN MATERIALS SCIENCE, 2018, 93 : 112 - 232
  • [9] Three-dimensional magnetic recording
    Greaves, Simon
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2023, 588
  • [10] Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient
    Gutfleisch, Oliver
    Willard, Matthew A.
    Bruck, Ekkes
    Chen, Christina H.
    Sankar, S. G.
    Liu, J. Ping
    [J]. ADVANCED MATERIALS, 2011, 23 (07) : 821 - 842