Automated detection of otosclerosis with interpretable deep learning using temporal bone computed tomography images

被引:0
作者
Wang, Zheng [1 ,3 ]
Song, Jian [2 ,4 ]
Lin, Kaibin [1 ,3 ]
Hong, Wei [1 ,3 ]
Mao, Shuang [2 ,4 ]
Wu, Xuewen [2 ,4 ]
Zhang, Jianglin [5 ,6 ,7 ]
机构
[1] Hunan First Normal Univ, Sch Comp Sci, Changsha 410205, Peoples R China
[2] Cent South Univ, Dept Otorhinolaryngol, Xiangya Hosp, Changsha, Hunan, Peoples R China
[3] Key Lab Hunan Prov Stat Learning & Intelligent Com, Changsha 410205, Peoples R China
[4] Prov Key Lab Otolaryngol Crit Dis, Changsha, Hunan, Peoples R China
[5] Southern Univ Sci & Technol, Jinan Univ, Shenzhen Peoples Hosp, Affiliated Hosp 1,Clin Med Coll 2,Dept Dermatol, Shenzhen 518020, Guangdong, Peoples R China
[6] Natl Clin Res Ctr Skin Dis, Candidate Branch, Shenzhen 518020, Guangdong, Peoples R China
[7] Southern Univ Sci & Technol, Jinan Univ, Shenzhen Peoples Hosp, Affiliated Hosp 1,Clin Med Coll 2,Dept Geriatr, Shenzhen 518020, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Computed tomography; Deep learning; Area under the receiver operating; characteristic curve; Temporal bone computed tomography; Interpretability;
D O I
10.1016/j.heliyon.2024.e29670
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Objective: This study aimed to develop an automated detection schema for otosclerosis with interpretable deep learning using temporal bone computed tomography images. Methods: With approval from the institutional review board, we retrospectively analyzed highresolution computed tomography scans of the temporal bone of 182 participants with otosclerosis (67 male subjects and 115 female subjects; average age, 36.42 years) and 157 participants without otosclerosis (52 male subjects and 102 female subjects; average age, 30.61 years) using deep learning. Transfer learning with the pretrained VGG19, Mask RCNN, and EfficientNet models was used. In addition, 3 clinical experts compared the system's performance by reading the same computed tomography images for a subset of 35 unseen subjects. An area under the receiver operating characteristic curve and a saliency map were used to further evaluate the diagnostic performance. Results: In prospective unseen test data, the diagnostic performance of the automatically interpretable otosclerosis detection system at the optimal threshold was 0.97 and 0.98 for sensitivity and specificity, respectively. In comparison with the clinical acumen of otolaryngologists at P < 0.05, the proposed system was not significantly different. Moreover, the area under the receiver operating characteristic curve for the proposed system was 0.99, indicating satisfactory diagnostic accuracy. Conclusion: Our research develops and evaluates a deep learning system that detects otosclerosis at a level comparable with clinical otolaryngologists. Our system is an effective schema for the differential diagnosis of otosclerosis in computed tomography examinations.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Automated detection of lung nodules in computed tomography images: a review
    Lee, S. L. A.
    Kouzani, A. Z.
    Hu, E. J.
    MACHINE VISION AND APPLICATIONS, 2012, 23 (01) : 151 - 163
  • [42] Deep Learning Applications in Computed Tomography Images for Pulmonary Nodule Detection and Diagnosis: A Review
    Li, Rui
    Xiao, Chuda
    Huang, Yongzhi
    Hassan, Haseeb
    Huang, Bingding
    DIAGNOSTICS, 2022, 12 (02)
  • [43] Automated deep learning-based segmentation of COVID-19 lesions from chest computed tomography images
    Salehi, Mohammad
    Ardekani, Mahdieh
    Taramsari, Alireza
    Ghaffari, Hamed
    Haghparast, Mohammad
    POLISH JOURNAL OF RADIOLOGY, 2022, 87 : E478 - E486
  • [44] Deep learning model for automated kidney stone detection using coronal CT images
    Yildirim, Kadir
    Bozdag, Pinar Gundogan
    Talo, Muhammed
    Yildirim, Ozal
    Karabatak, Murat
    Acharya, U. Rajendra
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 135
  • [45] Automated Detection of Epiretinal Membranes in OCT Images Using Deep Learning
    Tang, Yong
    Gao, Xiaorong
    Wang, Weijia
    Dan, Yujiao
    Zhou, Linjing
    Su, Song
    Wu, Jiali
    Lv, Hongbin
    He, Yue
    OPHTHALMIC RESEARCH, 2023, 66 (01) : 238 - 246
  • [46] Automatic cervical lymph nodes detection and segmentation in heterogeneous computed tomography images using deep transfer learning
    Liao, Wenjun
    Luo, Xiangde
    Li, Lu
    Xu, Jinfeng
    He, Yuan
    Huang, Hui
    Zhang, Shichuan
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [47] A hierarchical fusion strategy of deep learning networks for detection and segmentation of hepatocellular carcinoma from computed tomography images
    I-Cheng Lee
    Yung-Ping Tsai
    Yen-Cheng Lin
    Ting-Chun Chen
    Chia-Heng Yen
    Nai-Chi Chiu
    Hsuen-En Hwang
    Chien-An Liu
    Jia-Guan Huang
    Rheun-Chuan Lee
    Yee Chao
    Shinn-Ying Ho
    Yi-Hsiang Huang
    Cancer Imaging, 24
  • [48] A hierarchical fusion strategy of deep learning networks for detection and segmentation of hepatocellular carcinoma from computed tomography images
    Lee, I-Cheng
    Tsai, Yung-Ping
    Lin, Yen-Cheng
    Chen, Ting-Chun
    Yen, Chia-Heng
    Chiu, Nai-Chi
    Hwang, Hsuen-En
    Liu, Chien-An
    Huang, Jia-Guan
    Lee, Rheun-Chuan
    Chao, Yee
    Ho, Shinn-Ying
    Huang, Yi-Hsiang
    CANCER IMAGING, 2024, 24 (01)
  • [49] Sex Prediction of Hyoid Bone from Computed Tomography Images Using the DenseNet121 Deep Learning Model
    Bakici, Rukiye Sumeyye
    Cakmak, Muhammet
    Oner, Zulal
    Oner, Serkan
    INTERNATIONAL JOURNAL OF MORPHOLOGY, 2024, 42 (03): : 826 - 832
  • [50] Using deep learning to distinguish malignant from benign parotid tumors on plain computed tomography images
    Hu, Ziyang
    Wang, Baixin
    Pan, Xiao
    Cao, Dantong
    Gao, Antian
    Yang, Xudong
    Chen, Ying
    Lin, Zitong
    FRONTIERS IN ONCOLOGY, 2022, 12