Automated detection of otosclerosis with interpretable deep learning using temporal bone computed tomography images

被引:0
作者
Wang, Zheng [1 ,3 ]
Song, Jian [2 ,4 ]
Lin, Kaibin [1 ,3 ]
Hong, Wei [1 ,3 ]
Mao, Shuang [2 ,4 ]
Wu, Xuewen [2 ,4 ]
Zhang, Jianglin [5 ,6 ,7 ]
机构
[1] Hunan First Normal Univ, Sch Comp Sci, Changsha 410205, Peoples R China
[2] Cent South Univ, Dept Otorhinolaryngol, Xiangya Hosp, Changsha, Hunan, Peoples R China
[3] Key Lab Hunan Prov Stat Learning & Intelligent Com, Changsha 410205, Peoples R China
[4] Prov Key Lab Otolaryngol Crit Dis, Changsha, Hunan, Peoples R China
[5] Southern Univ Sci & Technol, Jinan Univ, Shenzhen Peoples Hosp, Affiliated Hosp 1,Clin Med Coll 2,Dept Dermatol, Shenzhen 518020, Guangdong, Peoples R China
[6] Natl Clin Res Ctr Skin Dis, Candidate Branch, Shenzhen 518020, Guangdong, Peoples R China
[7] Southern Univ Sci & Technol, Jinan Univ, Shenzhen Peoples Hosp, Affiliated Hosp 1,Clin Med Coll 2,Dept Geriatr, Shenzhen 518020, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Computed tomography; Deep learning; Area under the receiver operating; characteristic curve; Temporal bone computed tomography; Interpretability;
D O I
10.1016/j.heliyon.2024.e29670
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Objective: This study aimed to develop an automated detection schema for otosclerosis with interpretable deep learning using temporal bone computed tomography images. Methods: With approval from the institutional review board, we retrospectively analyzed highresolution computed tomography scans of the temporal bone of 182 participants with otosclerosis (67 male subjects and 115 female subjects; average age, 36.42 years) and 157 participants without otosclerosis (52 male subjects and 102 female subjects; average age, 30.61 years) using deep learning. Transfer learning with the pretrained VGG19, Mask RCNN, and EfficientNet models was used. In addition, 3 clinical experts compared the system's performance by reading the same computed tomography images for a subset of 35 unseen subjects. An area under the receiver operating characteristic curve and a saliency map were used to further evaluate the diagnostic performance. Results: In prospective unseen test data, the diagnostic performance of the automatically interpretable otosclerosis detection system at the optimal threshold was 0.97 and 0.98 for sensitivity and specificity, respectively. In comparison with the clinical acumen of otolaryngologists at P < 0.05, the proposed system was not significantly different. Moreover, the area under the receiver operating characteristic curve for the proposed system was 0.99, indicating satisfactory diagnostic accuracy. Conclusion: Our research develops and evaluates a deep learning system that detects otosclerosis at a level comparable with clinical otolaryngologists. Our system is an effective schema for the differential diagnosis of otosclerosis in computed tomography examinations.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Automated femur segmentation from computed tomography images using a deep neural network
    Bjornsson, P. A.
    Helgason, B.
    Palsson, H.
    Sigurdsson, S.
    Gudnason, V.
    Ellingsen, L. M.
    MEDICAL IMAGING 2021: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2021, 11600
  • [32] Deep learning model for diagnosing early gastric cancer using preoperative computed tomography images
    Zeng, Qingwen
    Feng, Zongfeng
    Zhu, Yanyan
    Zhang, Yang
    Shu, Xufeng
    Wu, Ahao
    Luo, Lianghua
    Cao, Yi
    Xiong, Jianbo
    Li, Hong
    Zhou, Fuqing
    Jie, Zhigang
    Tu, Yi
    Li, Zhengrong
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [33] Automatic Segmentation of Type A Aortic Dissection on Computed Tomography Images Using Deep Learning Approach
    Guo, Xiaoya
    Liu, Tianshu
    Yang, Yi
    Dai, Jianxin
    Wang, Liang
    Tang, Dalin
    Sun, Haoliang
    DIAGNOSTICS, 2024, 14 (13)
  • [34] Effective deep learning classification for kidney stone using axial computed tomography (CT) images
    Sabuncu, Ozlem
    Bilgehan, Buelent
    Kneebone, Enver
    Mirzaei, Omid
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2023, 68 (05): : 481 - 491
  • [35] Deep Learning for the Detection of Breast Cancers on Chest Computed Tomography
    Koh, Jieun
    Yoon, Youngno
    Kim, Sungwon
    Han, Kyunghwa
    Kim, Eun-Kyung
    CLINICAL BREAST CANCER, 2022, 22 (01) : 26 - 31
  • [36] Deep learning-based automated liver contouring using a small sample of radiotherapy planning computed tomography images
    Arjmandi, N.
    Momennezhad, M.
    Arastouei, S.
    Mosleh-Shirazi, M. A.
    Albawi, A.
    Pishevar, Z.
    Nasseri, S.
    RADIOGRAPHY, 2024, 30 (05) : 1442 - 1450
  • [37] Intelligent diagnosis of coronavirus with computed tomography images using a deep learning model
    Sarac, Marko
    Mravik, Milos
    Jovanovic, Dijana
    Strumberger, Ivana
    Zivkovic, Miodrag
    Bacanin, Nebojsa
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (02)
  • [38] Hydrocephalus classification in brain computed tomography medical images using deep learning
    Al Rub, Salsabeel Abu
    Alaiad, Ahmad
    Hmeidi, Ismail
    Quwaider, Muhannad
    Alzoubi, Omar
    SIMULATION MODELLING PRACTICE AND THEORY, 2023, 123
  • [39] Deep learning IoT system for online stroke detection in skull computed tomography images
    Dourado, Carlos M. J. M., Jr.
    da Silva, Suane Pires P.
    da Nobrega, Raul Victor M.
    Barros, Antonio Carlos da S.
    Reboucas Filho, Pedro P.
    de Albuquerque, Victor Hugo C.
    COMPUTER NETWORKS, 2019, 152 : 25 - 39
  • [40] Automated detection of lung nodules in computed tomography images: a review
    S. L. A. Lee
    A. Z. Kouzani
    E. J. Hu
    Machine Vision and Applications, 2012, 23 : 151 - 163