Gray and White Matter Metrics Demonstrate Distinct and Complementary Prediction of Differences in Cognitive Performance in Children: Findings from ABCD (N=11,876)

被引:7
作者
Michel, Lea C. [1 ]
McCormick, Ethan M. [1 ,2 ,3 ]
Kievit, Rogier A. [1 ]
机构
[1] Radboud Univ Nijmegen, Med Ctr, Cognit Neurosci Dept, NL-6525 GA Nijmegen, Netherlands
[2] Leiden Univ, Inst Psychol, Methodol & Stat, NL-2333 AK Leiden, Netherlands
[3] Univ N Carolina, Dept Psychol & Neurosci, Chapel Hill, NC 27599 USA
关键词
cognitive performance; gray matter; regularization; structural equation modeling; white matter; MULTIPLE-INDICATORS; BRAIN; THICKNESS; ADOLESCENCE; CORTEX; MEMORY; ADULTS; MRI;
D O I
10.1523/JNEUROSCI.0465-23.2023
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Individual differences in cognitive performance in childhood are a key predictor of significant life outcomes such as educational attainment and mental health. Differences in cognitive ability are governed in part by variations in brain structure. However, studies commonly focus on either gray or white matter metrics in humans, leaving open the key question as to whether gray or white matter microstructure plays distinct or complementary roles supporting cognitive performance. To compare the role of gray and white matter in supporting cognitive performance, we used regularized structural equation models to predict cognitive performance with gray and white matter measures. Specifically, we compared how gray matter (volume, cortical thickness, and surface area) and white matter measures (volume, fractional anisotropy, and mean diffusivity) predicted individual differences in cognitive performance. The models were tested in 11,876 children (ABCD Study; 5,680 female, 6,196 male) at 10 years old. We found that gray and white matter metrics bring partly nonoverlapping information to predict cognitive performance. The models with only gray or white matter explained respectively 15.4 and 12.4% of the variance in cognitive performance, while the combined model explained 19.0%. Zooming in, we additionally found that different metrics within gray and white matter had different predictive power and that the tracts/regions that were most predictive of cognitive performance differed across metrics. These results show that studies focusing on a single metric in either gray or white matter to study the link between brain structure and cognitive performance are missing a key part of the equation.
引用
收藏
页数:11
相关论文
共 62 条
[1]   Evaluation of motion and its effect on brain magnetic resonance image quality in children [J].
Afacan, Onur ;
Erem, Burak ;
Roby, Diona P. ;
Roth, Noam ;
Roth, Amir ;
Prabhu, Sanjay P. ;
Warfield, Simon K. .
PEDIATRIC RADIOLOGY, 2016, 46 (12) :1728-1735
[2]   Diffusion tensor imaging (DTI)-based white matter mapping in brain research: A review [J].
Assaf, Yaniv ;
Pasternak, Ofer .
JOURNAL OF MOLECULAR NEUROSCIENCE, 2008, 34 (01) :51-61
[3]   Quantitative genetic modeling of variation in human brain morphology [J].
Baaré, WFC ;
Pol, HEH ;
Boomsma, DI ;
Posthuma, D ;
de Geus, EJC ;
Schnack, HG ;
van Haren, NEM ;
van Oel, CJ ;
Kahn, RS .
CEREBRAL CORTEX, 2001, 11 (09) :816-824
[4]   Where smart brains are different: A quantitative meta-analysis of functional and structural brain imaging studies on intelligence [J].
Basten, Ulrike ;
Hilger, Kirsten ;
Fiebach, Christian J. .
INTELLIGENCE, 2015, 51 :10-27
[5]   Brain charts for the human lifespan [J].
Bethlehem, R. A. I. ;
Seidlitz, J. ;
White, S. R. ;
Vogel, J. W. ;
Anderson, K. M. ;
Adamson, C. ;
Adler, S. ;
Alexopoulos, G. S. ;
Anagnostou, E. ;
Areces-Gonzalez, A. ;
Astle, D. E. ;
Auyeung, B. ;
Ayub, M. ;
Bae, J. ;
Ball, G. ;
Baron-Cohen, S. ;
Beare, R. ;
Bedford, S. A. ;
Benegal, V. ;
Beyer, F. ;
Blangero, J. ;
Blesa Cabez, M. ;
Boardman, J. P. ;
Borzage, M. ;
Bosch-Bayard, J. F. ;
Bourke, N. ;
Calhoun, V. D. ;
Chakravarty, M. M. ;
Chen, C. ;
Chertavian, C. ;
Chetelat, G. ;
Chong, Y. S. ;
Cole, J. H. ;
Corvin, A. ;
Costantino, M. ;
Courchesne, E. ;
Crivello, F. ;
Cropley, V. L. ;
Crosbie, J. ;
Crossley, N. ;
Delarue, M. ;
Delorme, R. ;
Desrivieres, S. ;
Devenyi, G. A. ;
Di Biase, M. A. ;
Dolan, R. ;
Donald, K. A. ;
Donohoe, G. ;
Dunlop, K. ;
Edwards, A. D. .
NATURE, 2022, 604 (7906) :525-+
[6]  
Borgeest G, 2021, bioRxiv
[7]   The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites [J].
Casey, B. J. ;
Cannonier, Tariq ;
Conley, May I. ;
Cohen, Alexandra O. ;
Barch, Deanna M. ;
Heitzeg, Mary M. ;
Soules, Mary E. ;
Teslovich, Theresa ;
Dellarco, Danielle V. ;
Garavan, Hugh ;
Orr, Catherine A. ;
Wager, Tor D. ;
Banich, Marie T. ;
Speer, Nicole K. ;
Sutherland, Matthew T. ;
Riedel, Michael C. ;
Dick, Anthony S. ;
Bjork, James M. ;
Thomas, Kathleen M. ;
Chaarani, Bader ;
Mejia, Margie H. ;
Hagler, Donald J., Jr. ;
Cornejo, M. Daniela ;
Sicat, Chelsea S. ;
Harms, Michael P. ;
Dosenbach, Nico U. F. ;
Rosenberg, Monica ;
Earl, Eric ;
Bartsch, Hauke ;
Watts, Richard ;
Polimeni, Jonathan R. ;
Kuperman, Joshua M. ;
Fair, Damien A. ;
Dale, Anders M. .
DEVELOPMENTAL COGNITIVE NEUROSCIENCE, 2018, 32 :43-54
[8]   White matter maturation profiles through early childhood predict general cognitive ability [J].
Deoni, Sean C. L. ;
O'Muircheartaigh, Jonathan ;
Elison, Jed T. ;
Walker, Lindsay ;
Doernberg, Ellen ;
Waskiewicz, Nicole ;
Dirks, Holly ;
Piryatinsky, Irene ;
Dean, Doug C., III ;
Jumbe, N. L. .
BRAIN STRUCTURE & FUNCTION, 2016, 221 (02) :1189-1203
[9]   An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest [J].
Desikan, Rahul S. ;
Segonne, Florent ;
Fischl, Bruce ;
Quinn, Brian T. ;
Dickerson, Bradford C. ;
Blacker, Deborah ;
Buckner, Randy L. ;
Dale, Anders M. ;
Maguire, R. Paul ;
Hyman, Bradley T. ;
Albert, Marilyn S. ;
Killiany, Ronald J. .
NEUROIMAGE, 2006, 31 (03) :968-980
[10]   The relationship between diffusion tensor imaging and volumetry as measures of white matter properties [J].
Fjell, Anders M. ;
Westlye, Lars T. ;
Greve, Doug N. ;
Fischl, Bruce ;
Benner, Thomas ;
van der Kouwe, Andre J. W. ;
Salat, David ;
Bjornerud, Atle ;
Due-Tonnessen, Paulina ;
Walhovd, Kristine B. .
NEUROIMAGE, 2008, 42 (04) :1654-1668