Resisting Backdoor Attacks in Federated Learning via Bidirectional Elections and Individual Perspective

被引:0
|
作者
Qin, Zhen [1 ]
Chen, Feiyi [1 ]
Zhi, Chen [2 ]
Yan, Xueqiang [3 ]
Deng, Shuiguang [1 ]
机构
[1] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou, Peoples R China
[2] Zhejiang Univ, Sch Software Technol, Ningbo, Peoples R China
[3] Huawei Technol Co Ltd, Shanghai, Peoples R China
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing approaches defend against backdoor attacks in federated learning (FL) mainly through a) mitigating the impact of infected models, or b) excluding infected models. The former negatively impacts model accuracy, while the latter usually relies on globally clear boundaries between benign and infected model updates. However, in reality, model updates can easily become mixed and scattered throughout due to the diverse distributions of local data. This work focuses on excluding infected models in FL. Unlike previous perspectives from a global view, we propose Snowball, a novel anti-backdoor FL framework through bidirectional elections from an individual perspective inspired by one principle deduced by us and two principles in FL and deep learning. It is characterized by a) bottom-up election, where each candidate model update votes to several peer ones such that a few model updates are elected as selectees for aggregation; and b) top-down election, where selectees progressively enlarge themselves through picking up from the candidates. We compare Snowball with state-of-the-art defenses to backdoor attacks in FL on five real-world datasets, demonstrating its superior resistance to backdoor attacks and slight impact on the accuracy of the global model.
引用
收藏
页码:14677 / 14685
页数:9
相关论文
共 50 条
  • [21] RoPE: Defending against backdoor attacks in federated learning systems
    Wang, Yongkang
    Zhai, Di-Hua
    Xia, Yuanqing
    KNOWLEDGE-BASED SYSTEMS, 2024, 293
  • [22] DEFENDING AGAINST BACKDOOR ATTACKS IN FEDERATED LEARNING WITH DIFFERENTIAL PRIVACY
    Miao, Lu
    Yang, Wei
    Hu, Rong
    Li, Lu
    Huang, Liusheng
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 2999 - 3003
  • [23] BADFSS: Backdoor Attacks on Federated Self-Supervised Learning
    Zhang, Jiale
    Zhu, Chengcheng
    Di Wu
    Sun, Xiaobing
    Yong, Jianming
    Long, Guodong
    PROCEEDINGS OF THE THIRTY-THIRD INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2024, 2024, : 548 - 558
  • [24] Practical and General Backdoor Attacks Against Vertical Federated Learning
    Xuan, Yuexin
    Chen, Xiaojun
    Zhao, Zhendong
    Tang, Bisheng
    Dong, Ye
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT II, 2023, 14170 : 402 - 417
  • [25] Defending Against Data and Model Backdoor Attacks in Federated Learning
    Wang, Hao
    Mu, Xuejiao
    Wang, Dong
    Xu, Qiang
    Li, Kaiju
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (24): : 39276 - 39294
  • [26] Adaptive Backdoor Attacks Against Dataset Distillation for Federated Learning
    Chai, Ze
    Gao, Zhipeng
    Lin, Yijing
    Zhao, Chen
    Yu, Xinlei
    Xie, Zhiqiang
    ICC 2024 - IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2024, : 4614 - 4619
  • [27] CRFL: Certifiably Robust Federated Learning against Backdoor Attacks
    Xie, Chulin
    Chen, Minghao
    Chen, Pin-Yu
    Li, Bo
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [28] CoBA: Collusive Backdoor Attacks With Optimized Trigger to Federated Learning
    Lyu, Xiaoting
    Han, Yufei
    Wang, Wei
    Liu, Jingkai
    Wang, Bin
    Chen, Kai
    Li, Yidong
    Liu, Jiqiang
    Zhang, Xiangliang
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2025, 22 (02) : 1506 - 1518
  • [29] Collusive Backdoor Attacks in Federated Learning Frameworks for IoT Systems
    Alharbi, Saier
    Guo, Yifan
    Yu, Wei
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (11): : 19694 - 19707
  • [30] MITDBA: Mitigating Dynamic Backdoor Attacks in Federated Learning for IoT Applications
    Wang, Yongkang
    Zhai, Di-Hua
    Han, Dongyu
    Guan, Yuyin
    Xia, Yuanqing
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (06): : 10115 - 10132