Differentiable TAN Structure Learning for Bayesian Network Classifiers

被引:0
|
作者
Roth, Wolfgang [1 ]
Pernkopf, Franz [1 ]
机构
[1] Graz Univ Technol, Signal Proc & Speech Commun Lab, Graz, Austria
来源
INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, VOL 138 | 2020年 / 138卷
基金
奥地利科学基金会;
关键词
Bayesian network classifiers; differentiable structure learning; tree-augmented naive Bayes; hybrid generative-discriminative learning;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Learning the structure of Bayesian networks is a difficult combinatorial optimization problem. In this paper, we consider learning of tree-augmented naive Bayes (TAN) structures for Bayesian network classifiers with discrete input features. Instead of performing a combinatorial optimization over the space of possible graph structures, the proposed method learns a distribution over graph structures. After training, we select the most probable structure of this distribution. This allows for a joint training of the Bayesian network parameters along with its TAN structure using gradientbased optimization. The proposed method is agnostic to the specific loss and only requires that it is differentiable. We perform extensive experiments using a hybrid generative-discriminative loss based on the discriminative probabilistic margin. Our method consistently outperforms random TAN structures and Chow-Liu TAN structures.
引用
收藏
页码:389 / 400
页数:12
相关论文
共 50 条
  • [1] Efficient learning of Bayesian network classifiers - An extension to the TAN classifier
    Carvalho, Alexandra M.
    Oliveira, Arlindo L.
    Sagot, Marie-France
    AI 2007: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2007, 4830 : 16 - +
  • [2] MAXIMUM MARGIN STRUCTURE LEARNING OF BAYESIAN NETWORK CLASSIFIERS
    Pernkopf, Franz
    Wohlmayr, Michael
    Muecke, Manfred
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 2076 - 2079
  • [3] Floating search algorithm for structure learning of Bayesian network classifiers
    Pernkopf, F
    O'Leary, P
    PATTERN RECOGNITION LETTERS, 2003, 24 (15) : 2839 - 2848
  • [4] Bandit-Based Structure Learning for Bayesian Network Classifiers
    Eghbali, Sepehr
    Ashtiani, Mohammad Hassan Zokaei
    Ahmadabadi, Majid Nili
    Araabi, Babak Nadjar
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT II, 2012, 7664 : 349 - 356
  • [5] Efficient Heuristics for Discriminative Structure Learning of Bayesian Network Classifiers
    Pernkopf, Franz
    Bilmes, Jeff A.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2010, 11 : 2323 - 2360
  • [6] Learning Bayesian classifiers from dependency network classifiers
    Gamez, Jose A.
    Mateo, Juan L.
    Puerta, Jose M.
    ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, PT 1, 2007, 4431 : 806 - +
  • [7] DiBS: Differentiable Bayesian Structure Learning
    Lorch, Lars
    Rothfuss, Jonas
    Schoelkopf, Bernhard
    Krause, Andreas
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [8] Scalable Learning of Bayesian Network Classifiers
    Martinez, Ana M.
    Webb, Geoffrey I.
    Chen, Shenglei
    Zaidi, Nayyar A.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [9] bnclassify: Learning Bayesian Network Classifiers
    Mihaljevic, Bojan
    Bielza, Concha
    Larranaga, Pedro
    R JOURNAL, 2018, 10 (02): : 455 - 468
  • [10] Widened Learning of Bayesian Network Classifiers
    Sampson, Oliver R.
    Berthold, Michael R.
    ADVANCES IN INTELLIGENT DATA ANALYSIS XV, 2016, 9897 : 215 - 225