Draping of biaxial non-crimp fabric on hemispherical shape

被引:0
作者
Zheng Ruochen [1 ]
Naouar, Naim [1 ]
Schaefer, Bastian
Platzer, Auriane [1 ]
Colmars, Julien [1 ]
Kaerger, Luise [2 ]
Boisse, Philippe [1 ]
机构
[1] Univ Lyon, INSA Lyon, CNRS, UMR5259,LaMCoS, F-69621 Lyon, France
[2] Karlsruhe Inst Technol KIT, Inst Vehicle Syst Technol FAST, Karlsruhe, Germany
来源
MATERIAL FORMING, ESAFORM 2024 | 2024年 / 41卷
关键词
Biaxial NCF; Hyperelastic; Meso-Scale Model; Composite Forming; DEFORMATION; COMPOSITES; SIMULATION; BEHAVIOR;
D O I
10.21741/9781644903131-69
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The experiment and simulation of biaxial non-crimp fabric draping process is investigated. The finite element model is formulated employing a mesoscopic approach, wherein each individual fiber yarn and stitch is treated as a continuous medium, modeled separately for a more nuanced representation. The hemispherical punch shape for the draping is selected as it is the most commonly used academic shape with a rather simple double-curved geometry. The deformed shape, material draw-in and local shear angle between the experimental and numerical results are compared and discussed.
引用
收藏
页码:623 / 630
页数:8
相关论文
共 24 条
[1]  
Advani S.G., 2003, PROCESS MODELING COM, DOI DOI 10.1115/1.1584418
[2]   Development of innovative adaptive 3D Fiber Reinforced Plastics based on Shape Memory Alloys [J].
Ashir, Moniruddoza ;
Hahn, Lars ;
Kluge, Axel ;
Nocke, Andreas ;
Cherif, Chokri .
COMPOSITES SCIENCE AND TECHNOLOGY, 2016, 126 :43-51
[3]   Finite element model for NCF composite reinforcement preforming: Importance of inter-ply sliding [J].
Bel, S. ;
Hamila, N. ;
Boisse, P. ;
Dumont, F. .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2012, 43 (12) :2269-2277
[4]   A mesoscopic approach for the simulation of woven fibre composite forming [J].
Boisse, P ;
Zouari, B ;
Gasser, A .
COMPOSITES SCIENCE AND TECHNOLOGY, 2005, 65 (3-4) :429-436
[5]   Bending and wrinkling of composite fiber preforms and prepregs. A review and new developments in the draping simulations [J].
Boisse, P. ;
Colmars, J. ;
Hamila, N. ;
Naouar, N. ;
Steer, Q. .
COMPOSITES PART B-ENGINEERING, 2018, 141 :234-249
[6]   Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses [J].
Boisse, P. ;
Hamila, N. ;
Vidal-Salle, E. ;
Dumont, F. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2011, 71 (05) :683-692
[7]   Hyperelastic modelling for mesoscopic analyses of composite reinforcements [J].
Charmetant, A. ;
Vidal-Salle, E. ;
Boisse, P. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2011, 71 (14) :1623-1631
[8]   Meso-modelling of Non-Crimp Fabric composites for coupled drape and failure analysis [J].
Creech, G. ;
Pickett, A. K. .
JOURNAL OF MATERIALS SCIENCE, 2006, 41 (20) :6725-6736
[9]   Experimental and Numerical Determination of the Local Fiber Volume Content of Unidirectional Non-Crimp Fabrics with Forming Effects [J].
Galkin, Siegfried ;
Kunze, Eckart ;
Kaerger, Luise ;
Boehm, Robert ;
Gude, Maik .
JOURNAL OF COMPOSITES SCIENCE, 2019, 3 (01)
[10]   Characterizing the macroscopic response and local deformation mechanisms of a unidirectional non-crimp fabric [J].
Ghazimoradi, Mehdi ;
Trejo, Eleazar A. ;
Butcher, Clifford ;
Montesano, John .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2022, 156