A spectral Erdős-Rademacher theorem

被引:0
|
作者
Li, Yongtao [1 ]
Lu, Lu [1 ]
Peng, Yuejian [1 ,2 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[2] Hunan Univ, Sch Math, Changsha 410082, Hunan, Peoples R China
关键词
Extremal graph problems; Spectral radius; Counting triangles; GRAPHS; EIGENVALUES; RADIUS; NUMBER; BOUNDS;
D O I
10.1016/j.aam.2024.102720
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A classical result of Erd6s and Rademacher (1955) indicates a supersaturation phenomenon. It says that if G is a graph on n vertices with at least L n 2 / 4 ] + 1 edges, then G contains at least L n/ 2] triangles. We prove a spectral version of Erd6s- Rademacher's theorem. Moreover, Mubayi (2010) [28] extends the result of Erd6s and Rademacher from a triangle to any color -critical graph. It is interesting to study the extension of Mubayi from a spectral perspective. However, it is not apparent to measure the increment on the spectral radius of a graph comparing to the traditional edge version (Mubayi's result). In this paper, we provide a way to measure the increment on the spectral radius of a graph and propose a spectral version on the counting problems for color -critical graphs. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] A spectral excess theorem for normal digraphs
    Omidi, G. R.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 42 (02) : 537 - 554
  • [22] A strengthening of the spectral chromatic critical edge theorem: Books and theta graphs
    Zhai, Mingqing
    Lin, Huiqiu
    JOURNAL OF GRAPH THEORY, 2023, 102 (03) : 502 - 520
  • [23] On the order of the classical Erdős-Rogers functions
    Mubayi, Dhruv
    Verstraete, Jacques
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2025, 57 (02) : 582 - 598
  • [24] TURAN'S THEOREM IMPLIES STANLEY'S BOUND
    Nikiforov, V
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (02) : 601 - 605
  • [25] A generalization of Petersen's matching theorem
    Henning, Michael A.
    Shozi, Zekhaya B.
    DISCRETE MATHEMATICS, 2023, 346 (03)
  • [26] Growth rates of the bipartite Erdős-Gyárfás function
    Li, Xihe
    Broersma, Hajo
    Wang, Ligong
    JOURNAL OF GRAPH THEORY, 2024, 107 (03) : 597 - 628
  • [27] LOWER SPECTRAL RADIUS AND SPECTRAL MAPPING THEOREM FOR SUPREMA PRESERVING MAPPINGS
    Muller, Vladimir
    Peperko, Aljosa
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (08) : 4117 - 4132
  • [28] Smoothed Analysis of the Komlo<acute accent>s Conjecture: Rademacher Noise
    Aigner-Horev, Elad
    Hefetz, Dan
    Trushkin, Michael
    ELECTRONIC JOURNAL OF COMBINATORICS, 2025, 32 (01)
  • [29] A global two-dimensional version of Smale's cancellation theorem via spectral sequences
    Bertolim, M. A.
    Lima, D. V. S.
    Mello, M. P.
    De Rezende, K. A.
    Da Silveira, M. R.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2016, 36 : 1795 - 1838
  • [30] Exact results on generalized Erdős-Gallai problems
    Chakraborti, Debsoumya
    Chen, Da Qi
    EUROPEAN JOURNAL OF COMBINATORICS, 2024, 120