机构:
Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R ChinaCent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
Li, Yongtao
[1
]
Lu, Lu
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R ChinaCent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
Lu, Lu
[1
]
Peng, Yuejian
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
Hunan Univ, Sch Math, Changsha 410082, Hunan, Peoples R ChinaCent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
Peng, Yuejian
[1
,2
]
机构:
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[2] Hunan Univ, Sch Math, Changsha 410082, Hunan, Peoples R China
A classical result of Erd6s and Rademacher (1955) indicates a supersaturation phenomenon. It says that if G is a graph on n vertices with at least L n 2 / 4 ] + 1 edges, then G contains at least L n/ 2] triangles. We prove a spectral version of Erd6s- Rademacher's theorem. Moreover, Mubayi (2010) [28] extends the result of Erd6s and Rademacher from a triangle to any color -critical graph. It is interesting to study the extension of Mubayi from a spectral perspective. However, it is not apparent to measure the increment on the spectral radius of a graph comparing to the traditional edge version (Mubayi's result). In this paper, we provide a way to measure the increment on the spectral radius of a graph and propose a spectral version on the counting problems for color -critical graphs. (c) 2024 Elsevier Inc. All rights reserved.
机构:
Chuzhou Univ, Sch Math & Finance, Chuzhou 239012, Anhui, Peoples R ChinaChuzhou Univ, Sch Math & Finance, Chuzhou 239012, Anhui, Peoples R China
Zhai, Mingqing
Shu, Jinlong
论文数: 0引用数: 0
h-index: 0
机构:
East China Normal Univ, Sch Data Sci & Engn, Shanghai 200237, Peoples R ChinaChuzhou Univ, Sch Math & Finance, Chuzhou 239012, Anhui, Peoples R China
机构:
Univ British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, CanadaUniv British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
Yip, Chi Hoi
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES,
2024,
67
(01):
: 176
-
187