Three-Dimensional Bioprinting: The Ultimate Pinnacle of Tissue Engineering

被引:8
作者
Arumugam, Parkavi [1 ]
Kaarthikeyan, G. [1 ]
Eswaramoorthy, Rajalakshmanan [2 ]
机构
[1] Saveetha Univ, Saveetha Dent Coll & Hosp, Saveetha Inst Med & Tech Sci, Periodont, Chennai, India
[2] Saveetha Univ, Saveetha Dent Coll & Hosp, Saveetha Inst Med & Tech Sci, Ctr Mol Med & Diagnost COMManD,Dept Biochem, Chennai, India
关键词
tissue regeneration; stem cells; growth factors; extrusion-based bioprinting; bioink; three-dimensional bioprinting; 3D; BIOMATERIALS; BIOINK;
D O I
10.7759/cureus.58029
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Three-dimensional (3D) bioprinting has emerged as a revolutionary additive manufacturing technology that can potentially enable life -changing medical treatments in regenerative medicine. It applies the principles of tissue engineering for the printing of tissues and organs in a layer -by -layer manner. This review focuses on the various 3D bioprinting technologies currently available, the different biomaterials, cells, and growth factors that can be utilized to develop tissue -specific bioinks, the different venues for applying these technologies, and the challenges this technology faces.
引用
收藏
页数:11
相关论文
共 40 条
[1]   Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs [J].
Ashammakhi, N. ;
Ahadian, S. ;
Xu, C. ;
Montazerian, H. ;
Ko, H. ;
Nasiri, R. ;
Barros, N. ;
Khademhosseini, A. .
MATERIALS TODAY BIO, 2019, 1
[2]   3-D bioprinting technologies in tissue engineering and regenerative medicine: Current and future trends [J].
Bishop, Elliot S. ;
Mostafa, Sami ;
Pakvasa, Mikhail ;
Luu, Hue H. ;
Lee, Michael J. ;
Wolf, Jennifer Moriatis ;
Ameer, Guillermo A. ;
He, Tong-Chuan ;
Reid, Russell R. .
GENES & DISEASES, 2017, 4 (04) :185-195
[3]  
Borkar Tanhai, 2021, Bioprinting, V21, pe00111, DOI 10.1016/j.bprint.2020.e00111
[4]  
Boularaoui Selwa, 2020, Bioprinting, V20, pe00093, DOI 10.1016/j.bprint.2020.e00093
[5]   Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies [J].
Chang, Carlos C. ;
Boland, Eugene D. ;
Williams, Stuart K. ;
Hoying, James B. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2011, 98B (01) :160-170
[6]   Biomaterials / bioinks and extrusion bioprinting [J].
Chen, X. B. ;
Anvari-Yazdi, A. Fazel ;
Duan, X. ;
Zimmerling, A. ;
Gharraei, R. ;
Sharma, N. K. ;
Sweilem, S. ;
Ning, L. .
BIOACTIVE MATERIALS, 2023, 28 :511-536
[7]   Freeform Inkjet Printing of Cellular Structures with Bifurcations [J].
Christensen, Kyle ;
Xu, Changxue ;
Chai, Wenxuan ;
Zhang, Zhengyi ;
Fu, Jianzhong ;
Huang, Yong .
BIOTECHNOLOGY AND BIOENGINEERING, 2015, 112 (05) :1047-1055
[8]   Cell Damage Evaluation of Thermal Inkjet Printed Chinese Hamster Ovary Cells [J].
Cui, Xiaofeng ;
Dean, Delphine ;
Ruggeri, Zaverio M. ;
Boland, Thomas .
BIOTECHNOLOGY AND BIOENGINEERING, 2010, 106 (06) :963-969
[9]   3D Bioprinting of Developmentally Inspired Templates for Whole Bone Organ Engineering [J].
Daly, Andrew C. ;
Cunniffe, Grainne M. ;
Sathy, Binulal N. ;
Jeon, Oju ;
Alsberg, Eben ;
Kelly, Daniel J. .
ADVANCED HEALTHCARE MATERIALS, 2016, 5 (18) :2353-2362
[10]   Engineering considerations on extrusion-based bioprinting: interactions of material behavior, mechanical forces and cells in the printing needle [J].
Emmermacher, Julia ;
Spura, David ;
Cziommer, Jasmina ;
Kilian, David ;
Wollborn, Tobias ;
Fritsching, Udo ;
Steingroewer, Juliane ;
Walther, Thomas ;
Gelinsky, Michael ;
Lode, Anja .
BIOFABRICATION, 2020, 12 (02)