Polymer-adjusted zinc anode towards high-performance aqueous zinc ion batteries

被引:27
|
作者
Liu, Zeping [1 ]
Sun, Bing [2 ]
Zhang, Yu [1 ]
Zhang, Qixian [3 ]
Fan, Lishuang [1 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, Harbin 150001, Peoples R China
[2] Univ Technol Sydney, Fac Sci, Ctr Clean Energy Technol, Sch Math & Phys Sci, 15 Broadway, Ultimo, NSW 2007, Australia
[3] Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200444, Peoples R China
关键词
Polymer; Zinc ion battery; Coating; Electrolyte additive; Hydrogel electrolyte; Separator; ZN-METAL; DENDRITE-FREE; LONG-LIFE; ELECTROLYTE; SEPARATOR; ELECTRODEPOSITION; INTERFACE; LAYER; ORIENTATION; DEPOSITION;
D O I
10.1016/j.progpolymsci.2024.101817
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
High -safety and low-cost aqueous zinc ion batteries (AZIB) are expected to be used in large-scale energy storage systems. However, currently used zinc (Zn) anode materials are susceptible to derogatory processes such as dendrite growth or cause side reactions which limits their practical applications. Although polymeric materials have been specifically applied for Zn anode protection, the complicated composition and lack of understanding of the working mechanisms of currently used materials are not conducive to guiding further research. This review provides a summary and discussion of polymer materials that are used in AZIB applications and a platform for future material development. The importance of polymer materials and the advantages of their applications in Zn batteries are described. Subsequently, the latest progress in the design and optimization of polymer for stable Zn anodes is summarized from multiple perspectives, including electrolyte additives, artificial protective layers, hydrogel electrolytes, and novel separators. Finally, the future challenges and research directions of polymer -stabilized Zn anode are proposed. (c) 2024 Elsevier Ltd. All rights reserved.
引用
收藏
页数:31
相关论文
共 50 条
  • [41] A Biomimetic Polymer-Based Composite Coating Inhibits Zinc Dendrite Growth for High-Performance Zinc-Ion Batteries
    Liu, Xu
    Ma, Qingxin
    Wang, Jiahui
    Han, Qigang
    Liu, Chunguo
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (08) : 10384 - 10393
  • [42] Bimetallic Intercalated Vanadium Oxide As a High-Performance Cathode for Aqueous Zinc Ion Batteries
    Bai, Shuai
    Wang, Xi
    Wang, Qiming
    Chen, Zhuo
    Zhang, Yining
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (17) : 22403 - 22410
  • [43] Bimetallic Intercalated Vanadium Oxide As a High-Performance Cathode for Aqueous Zinc Ion Batteries
    Bai S.
    Wang X.
    Wang Q.
    Chen Z.
    Zhang Y.
    ACS Applied Materials and Interfaces, 2024, 16 (17) : 22403 - 22410
  • [44] Recent progress on modification strategies of both metal zinc anode and manganese dioxide cathode materials for high-performance aqueous zinc-ion batteries
    Zhou, Xiaozhong
    Li, Xiangyuan
    Pang, Junjun
    Lei, Ziqiang
    COORDINATION CHEMISTRY REVIEWS, 2025, 523
  • [45] Low-Temperature and High-Performance Vanadium-Based Aqueous Zinc-Ion Batteries
    Jin, Tao
    Ye, Xiling
    Chen, Zhuo
    Bai, Shuai
    Zhang, Yining
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (04) : 4729 - 4740
  • [46] A dual-functional rare earth halide additive for high-performance aqueous zinc ion batteries
    Zhang, Ruixin
    Cui, Yuxin
    Liu, Lili
    Chen, Shimou
    JOURNAL OF POWER SOURCES, 2024, 602
  • [47] Development of high-performance zinc-ion batteries: Issues, mitigation strategies, and perspectives
    Mageto, Teddy
    Bhoyate, Sanket D.
    Mensah-Darkwa, Kwadwo
    Kumar, Anuj
    Gupta, Ram K.
    JOURNAL OF ENERGY STORAGE, 2023, 70
  • [48] Ethylene carbonate as an organic electrolyte additive for high-performance aqueous rechargeable zinc-ion batteries
    Wijitrat, Apinya
    Qin, Jiaqian
    Kasemchainan, Jitti
    Tantavichet, Nisit
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2022, 112 : 96 - 105
  • [49] Towards high-performance zinc anode for zinc ion hybrid capacitor: Concurrently tailoring hydrodynamic stability, zinc deposition and solvation structure via electrolyte additive
    Huang, Haijian
    Yun, Juwei
    Feng, Hao
    Tian, Tian
    Xu, Jiawei
    Li, Deli
    Xia, Xue
    Yang, Zeheng
    Zhang, Weixin
    ENERGY STORAGE MATERIALS, 2023, 55 : 857 - 866
  • [50] A facile coating strategy for high stability aqueous zinc ion batteries: Porous rutile nano-TiO2 coating on zinc anode
    Li, Bin
    Xue, Jing
    Lv, Xin
    Zhang, Ruochen
    Ma, Kaixuan
    Wu, Xianwen
    Dai, Lei
    Wang, Ling
    He, Zhangxing
    SURFACE & COATINGS TECHNOLOGY, 2021, 421