A Unifying Generator Loss Function for Generative Adversarial Networks

被引:0
作者
Veiner, Justin [1 ]
Alajaji, Fady [1 ]
Gharesifard, Bahman [2 ]
机构
[1] Queens Univ, Dept Math & Stat, Kingston, ON K7L 3N6, Canada
[2] Univ Calif Los Angeles, Dept Elect & Comp Engn, Los Angeles, CA 90095 USA
基金
加拿大自然科学与工程研究理事会;
关键词
generative adversarial networks; deep learning; parameterized loss functions; f-divergence; Jensen-f-divergence; INFORMATION; DIVERGENCE; DISTANCES;
D O I
10.3390/e26040290
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A unifying alpha-parametrized generator loss function is introduced for a dual-objective generative adversarial network (GAN) that uses a canonical (or classical) discriminator loss function such as the one in the original GAN (VanillaGAN) system. The generator loss function is based on a symmetric class probability estimation type function, L-alpha, and the resulting GAN system is termed L-alpha-GAN. Under an optimal discriminator, it is shown that the generator's optimization problem consists of minimizing a Jensen-f(alpha)-divergence, a natural generalization of the Jensen-Shannon divergence, where f(alpha) is a convex function expressed in terms of the loss function L-alpha. It is also demonstrated that this L-alpha-GAN problem recovers as special cases a number of GAN problems in the literature, including VanillaGAN, least squares GAN (LSGAN), least kth-order GAN (LkGAN), and the recently introduced (alpha(D),alpha(G))-GAN with alpha(D)=1. Finally, experimental results are provided for three datasets-MNIST, CIFAR-10, and Stacked MNIST-to illustrate the performance of various examples of the L-alpha-GAN system.
引用
收藏
页数:24
相关论文
共 35 条
  • [1] ALI SM, 1966, J ROY STAT SOC B, V28, P131
  • [2] Almahairi A, 2018, PR MACH LEARN RES, V80
  • [3] INFORMATION-THEORETICAL CONSIDERATIONS ON ESTIMATION PROBLEMS
    ARIMOTO, S
    [J]. INFORMATION AND CONTROL, 1971, 19 (03): : 181 - &
  • [4] Arjovsky M, 2017, PR MACH LEARN RES, V70
  • [5] Least kth-Order and Renyi Generative Adversarial Networks
    Bhatia, Himesh
    Paul, William
    Alajaji, Fady
    Gharesifard, Bahman
    Burlina, Philippe
    [J]. NEURAL COMPUTATION, 2021, 33 (09) : 2473 - 2510
  • [6] Brock A, 2019, Arxiv, DOI [arXiv:1809.11096, 10.48550/arXiv.1809.11096]
  • [7] Csiszar I., 1967, STUD SCI MATH HUNG, V2, P229
  • [8] Csiszar I., 1963, Magyer Tud. Akad. Mat. Kutato Int. Koezl., V8, P85
  • [9] Fundamental Technologies in Modern Speech Recognition
    Furui, Sadaoki
    Deng, Li
    Gales, Mark
    Ney, Hermann
    Tokuda, Keiichi
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2012, 29 (06) : 16 - 17
  • [10] Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672