Application of mid-infrared (MIR) spectroscopy to identify and quantify minerals in New Zealand soils

被引:4
作者
Ma, Yuxin [1 ,2 ]
Minasny, Budiman [2 ]
Roudier, Pierre [1 ]
Theng, Benny K. G. [1 ]
Carrick, Sam [3 ]
机构
[1] Manawatu Mail Ctr, Manaaki Whenua Landcare Res, Private Bag 11052, Palmerston North 4442, New Zealand
[2] Univ Sydney, Sydney Inst Agr, Sch Life & Environm Sci, Sydney, NSW 2006, Australia
[3] Manaaki Whenua Landcare Res, Box 69040, Lincoln 7640, New Zealand
关键词
Mid-infrared (MIR) spectroscopy; New Zealand Soil Classification; Soil minerals; Quantification; Identification; DIFFUSE-REFLECTANCE SPECTROSCOPY; PARTIAL LEAST-SQUARES; CLAY-MINERALS; PREDICTION; SPECTRA; CARBON; NIR; COEFFICIENT; REGRESSION; CHEMISTRY;
D O I
10.1016/j.catena.2024.108115
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The analysis and characterization of soil minerals rely on the availability and capability of experts, therefore greatly influencing the efficiency and accuracy of mineral analysis. Mid-infrared (MIR) spectroscopy offers a low-cost, high-throughput alternative, as it instantly records the spectral signatures of soil minerals through the absorption of infrared radiation. This study investigates the potential of MIR spectroscopy to identify and quantify the most common minerals in the clay (<2 jim) fraction of New Zealand soils. We analysed 3,097 samples and developed partial least squares regression (PLSR) models to quantify the concentration for each of the 11 mineral types in the collated database. In addition, we developed a partial least squares discriminant analysis (PLS-DA) model to identify the dominant mineral of the analysed soil samples. Most models used for quantifying mineral compositions indicate high accuracy. The highest values of R2 (0.81), Lin's concordance correlation coefficient (0.90), RPIQ (4), and the lowest bias (-0.26 %) were obtained for the quantification of mica on the test set. For the identification of the dominant mineral, the overall accuracy was 75 % on the test set. In addition, we could correctly classify 94 % of the samples dominated by mica, 86 % of the samples by volcanic glass/amorphous silica, 82 % of the samples by allophane/imogolite, and 77 % of samples dominated by kaolin-smectite. Thus, MIR spectroscopy offers a valuable solution for mineral quantification and identification, especially in areas where quantified mineral databases are not readily available and human expertise is lacking.
引用
收藏
页数:13
相关论文
共 75 条
[51]   Using deep learning to predict soil properties from regional spectral data [J].
Padarian, J. ;
Minasny, B. ;
McBratney, A. B. .
GEODERMA REGIONAL, 2019, 16
[52]   Pedology and soil class mapping from proximal and remote sensed data [J].
Poppiel, Raul R. ;
Lacerda, Marilusa P. C. ;
Dematte, Jose A. M. ;
Oliveira Jr, Manuel P. ;
Gallo, Bruna C. ;
Safanelli, Jose L. .
GEODERMA, 2019, 348 :189-206
[53]   Near- versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: Where are we and what needs to be done? [J].
Reeves, James B., III .
GEODERMA, 2010, 158 (1-2) :3-14
[54]   Mid-infrared diffuse reflectance spectroscopy for the quantitative analysis of agricultural soils [J].
Reeves, JB ;
McCarty, GW ;
Reeves, VB .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2001, 49 (02) :766-772
[55]   The 3D distribution of phyllosilicate clay minerals in western Victoria [J].
Robinson, Nathan J. ;
Kitching, Matt .
GEODERMA, 2016, 284 :152-177
[56]   Mapping Brazilian soil mineralogy using proximal and remote sensing data [J].
Rosin, Nicolas Augusto ;
Dematte, Jose A. M. ;
Poppiel, Raul Roberto ;
Silvero, Nelida E. Q. ;
Rodriguez-Albarracin, Heidy S. ;
Rosas, Jorge Tadeu Fim ;
Greschuk, Lucas Tadeu ;
Bellinaso, Henrique ;
Minasny, Budiman ;
Gomez, Cecile ;
Marques Junior, Jose ;
Fernandes, Kathleen .
GEODERMA, 2023, 432
[57]   A global spectral library to characterize the world's soil [J].
Rossel, R. A. Viscarra ;
Behrens, T. ;
Ben-Dor, E. ;
Brown, D. J. ;
Dematte, J. A. M. ;
Shepherd, K. D. ;
Shi, Z. ;
Stenberg, B. ;
Stevens, A. ;
Adamchuk, V. ;
Aichi, H. ;
Barthes, B. G. ;
Bartholomeus, H. M. ;
Bayer, A. D. ;
Bernoux, M. ;
Bottcher, K. ;
Brodsky, L. ;
Du, C. W. ;
Chappell, A. ;
Fouad, Y. ;
Genot, V. ;
Gomez, C. ;
Grunwald, S. ;
Gubler, A. ;
Guerrero, C. ;
Hedley, C. B. ;
Knadel, M. ;
Morras, H. J. M. ;
Nocita, M. ;
Ramirez-Lopez, L. ;
Roudier, P. ;
Rufasto Campos, E. M. ;
Sanborn, P. ;
Sellitto, V. M. ;
Sudduth, K. A. ;
Rawlins, B. G. ;
Walter, C. ;
Winowiecki, L. A. ;
Hong, S. Y. ;
Ji, W. .
EARTH-SCIENCE REVIEWS, 2016, 155 :198-230
[58]   Fine-resolution multiscale mapping of clay minerals in Australian soils measured with near infrared spectra [J].
Rossel, R. A. Viscarra .
JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2011, 116
[59]   Using data mining to model and interpret soil diffuse reflectance spectra [J].
Rossel, R. A. Viscarra ;
Behrens, T. .
GEODERMA, 2010, 158 (1-2) :46-54
[60]   Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties [J].
Rossel, RAV ;
Walvoort, DJJ ;
McBratney, AB ;
Janik, LJ ;
Skjemstad, JO .
GEODERMA, 2006, 131 (1-2) :59-75