EXISTENCE AND UNIQUENESS OF ZAKHAROV-KUZNETSOV-BURGERS EQUATION WITH CAPUTO-FABRIZIO FRACTIONAL DERIVATIVE

被引:0
作者
Bouteraa, Noureddine [1 ,2 ]
机构
[1] Univ Oran 1 Ahmed Benbella, Lab Fundamental & Appl Math Oran LMFAO, Es Senia, Algeria
[2] Oran Grad Sch Econ, Bir El Djir, Algeria
来源
MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS | 2024年 / 92卷
关键词
Generalized Zakharov-Kuznetsov-Burgers equation; existence; fractional derivative; Banach fixed point; TRAVELING-WAVE SOLUTIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we discuss the existence and uniqueness results of a general class of Zakharov-Kuznetsov-Burgers equation. We suggest the generalization via the Caputo-Fabrizio fractional derivative. We introduce some conditions for the existence and uniqueness of solutions and to obtain them, we utilize the concept of the fixed-point theorem.
引用
收藏
页码:59 / 67
页数:9
相关论文
共 50 条
  • [31] Application of Measure of Noncompactness On Integral Equations Involving Generalized Proportional Fractional and Caputo-Fabrizio Fractional Integrals
    Das, Anupam
    Hazarika, Bipan
    Parvanah, Vahid
    Mahato, Nihar Kumar
    FILOMAT, 2022, 36 (17) : 5885 - 5893
  • [32] Transmission dynamics of fractional order Typhoid fever model using Caputo-Fabrizio operator
    Shaikh, Amjad S.
    Nisar, Kottakkaran Sooppy
    CHAOS SOLITONS & FRACTALS, 2019, 128 : 355 - 365
  • [33] On fractional infinite-horizon optimal control problems with a combination of conformable and Caputo-Fabrizio fractional derivatives
    Yavari, Mina
    Nazemi, Alireza
    ISA TRANSACTIONS, 2020, 101 : 78 - 90
  • [34] Mathematical Modelling of HIV/AIDS Treatment Using Caputo-Fabrizio Fractional Differential Systems
    Manikandan, S.
    Gunasekar, T.
    Kouidere, A.
    Venkatesan, K. A.
    Shah, Kamal
    Abdeljawad, Thabet
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (04)
  • [35] Characterization of the Quality Factor Due to the Static Prestress in Classical Caputo and Caputo-Fabrizio Fractional Thermoelastic Silicon Microbeam
    Youssef, Hamdy M.
    El-Bary, Alaa A.
    Al-Lehaibi, Eman A. N.
    POLYMERS, 2021, 13 (01) : 1 - 14
  • [36] Cosmic-Plasma Environment, Singular Manifold and Symbolic Computation for a Variable-Coefficient (2+1)-Dimensional Zakharov-Kuznetsov-Burgers Equation
    Gao, Xin-Yi
    Chen, Xiu-Qing
    Guo, Yong-Jiang
    Shan, Wen-Rui
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2025, 24 (02)
  • [37] Existence and uniqueness of periodic solutions for some nonlinear fractional pantograph differential equations with ψ-Caputo derivative
    Bouriah, Soufyane
    Foukrach, Djamal
    Benchohra, Mouffak
    Graef, John
    ARABIAN JOURNAL OF MATHEMATICS, 2021, 10 (03) : 575 - 587
  • [38] Existence and uniqueness results of the AB-Caputo type derivative in impulsive fractional differential equations
    Venkatachalam, Kuppusamy
    Batiha, Belal
    Almarri, Barakah
    Kumar, Marappan Sathish
    Bazighifan, Omar
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2025, 39 (04): : 407 - 417
  • [39] Existence and stability analysis of a problem of the Caputo fractional derivative with mixed conditions
    Abdellouahab, Naimi
    Bouhali, Keltum
    Alkhalifa, Loay
    Zennir, Khaled
    AIMS MATHEMATICS, 2025, 10 (03): : 6805 - 6826
  • [40] The construction of solutions to Zakharov-Kuznetsov equation with fractional power nonlinear terms
    Liu, Yang
    Wang, Xin
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)