Synchronization patterns in a network of diffusively delay-coupled memristive Chialvo neuron map

被引:21
作者
Wang, Zhen [1 ,2 ]
Parastesh, Fatemeh [3 ]
Natiq, Hayder [4 ,5 ]
Li, Jianhui [2 ]
Xi, Xiaojian [2 ]
Mehrabbeik, Mahtab [6 ]
机构
[1] Yanan Univ, Sch Math & Comp Sci, Yanan 716000, Peoples R China
[2] Xijing Univ, Shaanxi Int Joint Res Ctr Appl Technol Controllabl, Xian 710123, Peoples R China
[3] Chennai Inst Technol, Ctr Nonlinear Syst, Chennai, India
[4] Minist Higher Educ & Sci Res, Baghdad 10024, Iraq
[5] Imam Jaafar Al Sadiq Univ, Coll Informat Technol, Dept Comp Technol Engn, Baghdad, Iraq
[6] Amirkabir Univ Technol, Tehran Polytech, Dept Biomed Engn, Tehran, Iran
关键词
Time delay; Synchronization; Memristive Chialvo neuron; Master stability function; COMPLEX NETWORKS; TIME-DELAY; STABILITY; DYNAMICS; MODEL;
D O I
10.1016/j.physleta.2024.129607
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The inescapable presence of time delay in numerous real-world systems, particularly in neuronal networks, prompts an exploration of its impact on synchronization dynamics. This study employs memristive Chialvo maps to capture the local dynamics of network nodes, while connections are homogeneously described by a linear diffusive function-referred to as electrical couplings in mathematical neuroscience-incorporating a specific time delay. Using Master stability functions (MSFs), analytical assessments are conducted to examine the stability of synchronous solutions, a validation supported by time-averaged synchronization error calculations. This research reveals the time delay's influence on the synchrony, making the synchronous state dependent on the coupling parameter's strength. The behavior of the synchronization manifold is systematically probed across synchronous and asynchronous regions analyzed by the MSF analysis. Lastly, an investigation involving a neuronal network with a global coupling configuration reveals that neurons have a tendency to organize into clusters with distinct time lags.
引用
收藏
页数:11
相关论文
共 55 条
  • [1] Stability analysis of intralayer synchronization in time-varying multilayer networks with generic coupling functions
    Anwar, Md Sayeed
    Rakshit, Sarbendu
    Ghosh, Dibakar
    Bollt, Erik M.
    [J]. PHYSICAL REVIEW E, 2022, 105 (02)
  • [2] Synchronization in complex networks
    Arenas, Alex
    Diaz-Guilera, Albert
    Kurths, Jurgen
    Moreno, Yamir
    Zhou, Changsong
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03): : 93 - 153
  • [3] Three-Dimensional Memristive Hindmarsh-Rose Neuron Model with Hidden Coexisting Asymmetric Behaviors
    Bao, Bocheng
    Hu, Aihuang
    Bao, Han
    Xu, Quan
    Chen, Mo
    Wu, Huagan
    [J]. COMPLEXITY, 2018,
  • [4] Memristive effects on an improved discrete Rulkov neuron model
    Bao, Han
    Li, KeXin
    Ma, Jun
    Hua, ZhongYun
    Xu, Quan
    Bao, BoCheng
    [J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2023, 66 (11) : 3153 - 3163
  • [5] Complex networks: Structure and dynamics
    Boccaletti, S.
    Latora, V.
    Moreno, Y.
    Chavez, M.
    Hwang, D. -U.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5): : 175 - 308
  • [6] Memristor initial-offset boosting and its bifurcation mechanism in a memristive FitzHugh-Nagumo neuron model with hidden dynamics
    Chen, Xiongjian
    Wang, Ning
    Wang, Yiteng
    Wu, Huagan
    Xu, Quan
    [J]. CHAOS SOLITONS & FRACTALS, 2023, 174
  • [7] GENERIC EXCITABLE DYNAMICS ON A 2-DIMENSIONAL MAP
    CHIALVO, DR
    [J]. CHAOS SOLITONS & FRACTALS, 1995, 5 (3-4) : 461 - 479
  • [8] Cluster and group synchronization in delay-coupled networks
    Dahms, Thomas
    Lehnert, Judith
    Schoell, Eckehard
    [J]. PHYSICAL REVIEW E, 2012, 86 (01)
  • [9] A Memristive Spiking Neural Network Circuit With Selective Supervised Attention Algorithm
    Deng, Zekun
    Wang, Chunhua
    Lin, Hairong
    Sun, Yichuang
    [J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2023, 42 (08) : 2604 - 2617
  • [10] Dutta S., 2023, PHYS REV E, V108