Addressing the Carbonate Issue: Electrocatalysts for Acidic CO2 Reduction Reaction

被引:13
|
作者
Wu, Weixing [1 ]
Xu, Liangpang [1 ]
Lu, Qian [1 ]
Sun, Jiping [1 ]
Xu, Zhanyou [1 ]
Song, Chunshan [1 ]
Yu, Jimmy C. [1 ]
Wang, Ying [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Chem, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
acidic CO2 reduction reaction; characterization; device; electrocatalysts; energy conversion; mechanism; GAS-DIFFUSION ELECTRODES; ELECTROCHEMICAL REDUCTION; HYDROGEN EVOLUTION; DIOXIDE REDUCTION; MULTICARBON PRODUCTS; OXYGEN EVOLUTION; WATER OXIDATION; FORMIC-ACID; ELECTROREDUCTION; EFFICIENT;
D O I
10.1002/adma.202312894
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical CO2 reduction reaction (CO2RR) powered by renewable energy provides a promising route to CO2 conversion and utilization. However, the widely used neutral/alkaline electrolyte consumes a large amount of CO2 to produce (bi)carbonate byproducts, leading to significant challenges at the device level, thereby impeding the further deployment of this reaction. Conducting CO2RR in acidic electrolytes offers a promising solution to address the "carbonate issue"; however, it presents inherent difficulties due to the competitive hydrogen evolution reaction, necessitating concerted efforts toward advanced catalyst and electrode designs to achieve high selectivity and activity. This review encompasses recent developments of acidic CO2RR, from mechanism elucidation to catalyst design and device engineering. This review begins by discussing the mechanistic understanding of the reaction pathway, laying the foundation for catalyst design in acidic CO2RR. Subsequently, an in-depth analysis of recent advancements in acidic CO2RR catalysts is provided, highlighting heterogeneous catalysts, surface immobilized molecular catalysts, and catalyst surface enhancement. Furthermore, the progress made in device-level applications is summarized, aiming to develop high-performance acidic CO2RR systems. Finally, the existing challenges and future directions in the design of acidic CO2RR catalysts are outlined, emphasizing the need for improved selectivity, activity, stability, and scalability.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] Machine Learning in Screening High Performance Electrocatalysts for CO2 Reduction
    Zhang, Ning
    Yang, Baopeng
    Liu, Kang
    Li, Hongmei
    Chen, Gen
    Qiu, Xiaoqing
    Li, Wenzhang
    Hu, Junhua
    Fu, Junwei
    Jiang, Yong
    Liu, Min
    Ye, Jinhua
    SMALL METHODS, 2021, 5 (11)
  • [2] Bimetallic Electrocatalysts for CO2 Reduction
    Zhu, Wenlei
    Tackett, Brian M.
    Chen, Jingguang G.
    Jiao, Feng
    TOPICS IN CURRENT CHEMISTRY, 2018, 376 (06)
  • [3] Hollow CuS Microcube Electrocatalysts for CO2 Reduction Reaction
    Shao, Ping
    Ci, Suqin
    Yi, Luocai
    Cai, Pingwei
    Huang, Peng
    Cao, Changsheng
    Wen, Zhenhai
    CHEMELECTROCHEM, 2017, 4 (10): : 2593 - 2598
  • [4] Ni-based electrocatalysts for unconventional CO2 reduction reaction to formic acid
    Lepre, Enrico
    Heske, Julian
    Nowakowski, Michal
    Scoppola, Ernesto
    Zizak, Ivo
    Heil, Tobias
    Kuhne, Thomas D.
    Antonietti, Markus
    Lopez-Salas, Nieves
    Albero, Josep
    NANO ENERGY, 2022, 97
  • [5] Acidic CO2 Electrolysis Addressing the "Alkalinity Issue" and Achieving High CO2 Utilization
    Zhang, Ting
    Zhou, Jinlei
    Luo, Ting
    Lu, Ji-Qing
    Li, Zhengquan
    Weng, Xuexiang
    Yang, Fa
    CHEMISTRY-A EUROPEAN JOURNAL, 2023, 29 (46)
  • [6] Design and Preparation of Electrocatalysts by Electrodeposition for CO2 Reduction
    Liu, Jiyuan
    Li, Pengsong
    Bi, Jiahui
    Zhu, Qinggong
    Han, Buxing
    CHEMISTRY-A EUROPEAN JOURNAL, 2022, 28 (31)
  • [7] Molybdenum Sulfides and Selenides as Possible Electrocatalysts for CO2 Reduction
    Chan, Karen
    Tsai, Charlie
    Hansen, Heine A.
    Norskov, Jens K.
    CHEMCATCHEM, 2014, 6 (07) : 1899 - 1905
  • [8] Structural evolution of Cu2O nanocube electrocatalysts for the CO2 reduction reaction
    Ren, Qingye
    Zhang, Na
    Dong, Zejian
    Zhang, Lifeng
    Chen, Xing
    Luo, Langli
    NANO ENERGY, 2023, 106
  • [9] Heterogeneous Electrocatalysts for CO2 Reduction
    Yang, Chao
    Wang, Yuhang
    Qian, Linping
    Al-Enizi, Abdullah M.
    Zhang, Lijuan
    Zheng, Gengfeng
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (02): : 1034 - 1044
  • [10] Strain Engineering Electrocatalysts for Selective CO2 Reduction
    Jansonius, Ryan P.
    Reid, Lacey M.
    Virca, Carolyn N.
    Berlinguette, Curtis P.
    ACS ENERGY LETTERS, 2019, 4 (04): : 980 - 986