Estimation of multicomponent system reliability for inverse Weibull distribution using survival signature

被引:1
作者
Jana, Nabakumar [1 ]
Bera, Samadrita [1 ]
机构
[1] Indian Inst Technol ISM Dhanbad, Dept Math & Comp, Dhanbad 826004, Jharkhand, India
关键词
Survival signature; Maximum spacing estimator; Generalized pivotal quantity; Multicomponent system; Stress-strength reliability; STRESS-STRENGTH RELIABILITY; MULTIPLE TYPES; INFERENCE; PARAMETERS;
D O I
10.1007/s00362-024-01588-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The problem of estimating multicomponent stress-strength reliability Rk,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{k,n}$$\end{document} for two-parameter inverse Weibull distributions under progressive type-II censoring is considered. We derive maximum likelihood estimator, Bayes estimator and generalised confidence interval of Rk,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{k,n}$$\end{document} when all parameters are unknown. We study the reliability of stress-strength system with multiple types of components using signature-based approach. When different types of random stresses are acting on a compound system, we derive MLE, maximum spacing estimator of multi-state reliability. Using generalized pivotal quantity, the generalized confidence interval and percentile bootstrap intervals of the reliability are derived. Under a common stress subjected to the system, we also derive the estimators of the reliability parameter. Different point estimators and generalized, bootstrap confidence intervals of the reliability are developed. Risk comparison of the classical and Bayes estimators is carried out using Monte-Carlo simulation. Application of the proposed estimators is shown using real-life data sets.
引用
收藏
页码:5077 / 5108
页数:32
相关论文
共 30 条
[1]   Bayesian Inference for Reliability of Systems and Networks Using the Survival Signature [J].
Aslett, Louis J. M. ;
Coolen, Frank P. A. ;
Wilson, Simon P. .
RISK ANALYSIS, 2015, 35 (09) :1640-1651
[2]   Reliability inference of stress-strength model for the truncated proportional hazard rate distribution under progressively Type-II censored samples [J].
Bai, Xuchao ;
Shi, Yimin ;
Liu, Yiming ;
Liu, Bin .
APPLIED MATHEMATICAL MODELLING, 2019, 65 :377-389
[3]  
Balakrishnan N, 2014, STAT IND TECHNOL, P1, DOI 10.1007/978-0-8176-4807-7
[4]  
Balakrishnan N., 2000, STAT IND TECHNOL, DOI 10.1007/978-1-4612-1334-5
[5]  
CHENG RCH, 1983, J ROY STAT SOC B MET, V45, P394
[6]  
Coolen FPA, 2016, Saf Reliab, V36, P77, DOI DOI 10.1080/09617353.2016.1219936
[7]  
Coolen FPA, 2012, ADV INTEL SOFT COMPU, V170, P115
[8]   Alternatives to maximum likelihood estimation based on spacings and the Kullback-Leibler divergence [J].
Ekstrom, Magnus .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (06) :1778-1791
[9]   Generalizing the survival signature to unrepairable homogeneous multi-state systems [J].
Eryilmaz, Serkan ;
Tuncel, Altan .
NAVAL RESEARCH LOGISTICS, 2016, 63 (08) :593-599
[10]   Computing reliability indices of repairable systems via signature [J].
Eryilmaz, Serkan .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 260 :229-235