Numerical investigation of planar microcoils integrated in microfluidic devices for biological applications

被引:0
作者
Benbrahim, Abdelghani [1 ,2 ]
Benchenane, Halima [1 ]
Hammar, Salim [1 ]
Aour, Benaoumeur [1 ]
Mekkakia-Maaza, Nasreddine [2 ]
机构
[1] Natl Polytech Sch Oran Maurice Audin, LABAB, BP 1523, Oran 31000, Algeria
[2] Univ Sci & Technol Oran Mohamed Boudiaf, Fac Elect Engn, BP 1505, Oran 31023, Algeria
来源
MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS | 2025年 / 31卷 / 01期
关键词
MAGNETIC CELL-SEPARATION; ON-CHIP; SUPERPARAMAGNETIC NANOPARTICLES; ANALYSIS SYSTEMS; DRUG-DELIVERY; SORTING MACS; BEAD; FABRICATION; ELECTROMAGNETS; MANIPULATION;
D O I
10.1007/s00542-024-05674-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The objective of this work is to create a finite element model of different magnetic actuator topologies using COMSOL Multiphysics software. The aim is to simulate and improve the magnetic field generated by different planar microcoil topologies while minimising energy dissipation. The magnetic field generated by square and circular spiral planar microcoils was compared with that produced by serpentine meander planar microcoils. It has been found that the trapping efficiency in a magnetic manipulation microfluidic system for biological applications is closely linked to the geometry and electrical parameters of the planar microcoils. In addition, the location of these microcoils within the microfluidic channel intended for the circulation of the paramagnetic microbeads also play a crucial role. The obtained results show that bu reducing the inter-turn spacing using a thinner conductor cross-section and injected a higher electrical intensity in the actuator, both the magnetic field strength and its gradient can be increased, and therefore cause a higher magnetic actuation force.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 66 条
[1]   Magnetic manipulation of superparamagnetic nanoparticles in a microfluidic system for drug delivery applications [J].
Agiotis, L. ;
Theodorakos, I. ;
Samothrakitis, S. ;
Papazoglou, S. ;
Zergioti, I. ;
Raptis, Y. S. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2016, 401 :956-964
[2]   An Energy-Aware Nanoscale Design of Reversible Atomic Silicon Based on Miller Algorithm [J].
Ahmadpour, Seyed-Sajad ;
Jafari Navimipour, Nima ;
Bahar, Ali Nawaz ;
Mosleh, Mohammad ;
Yalcin, Senay .
IEEE DESIGN & TEST, 2023, 40 (05) :62-69
[3]   An Efficient Design of Multiplier for Using in Nano-Scale IoT Systems Using Atomic Silicon [J].
Ahmadpour, Seyed-Sajad ;
Heidari, Arash ;
Navimpour, Nima Jafari ;
Asadi, Mohammad-Ali ;
Yalcin, Senay .
IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (16) :14908-14909
[4]   A nano-scale n-bit ripple carry adder using an optimized XOR gate and quantum-dots technology with diminished cells and power dissipation [J].
Ahmadpour, Seyed-Sajad ;
Navimipour, Nima Jafari ;
Mosleh, Mohammad ;
Bahar, Ali Newaz ;
Yalcin, Senay .
NANO COMMUNICATION NETWORKS, 2023, 36
[5]   Design of planar microcoil-based NMR probe ensuring high SNR [J].
Ali, Zishan ;
Poenar, D. P. ;
Aditya, Sheel .
AIP ADVANCES, 2017, 7 (09)
[6]  
[Anonymous], COMSOL Multiphysics Reference Manual
[7]  
Becker E. W., 1986, Microelectronic Engineering, V4, P35, DOI 10.1016/0167-9317(86)90004-3
[8]   Physics and applications of microfluidics in biology [J].
Beebe, DJ ;
Mensing, GA ;
Walker, GM .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2002, 4 :261-286
[9]  
Bojko P, 1995, BLOOD, V86, P904
[10]   Recent advances in manipulation of micro- and nano-objects with magnetic fields at small scales [J].
Cao, Quanliang ;
Fan, Qi ;
Chen, Qi ;
Liu, Chunting ;
Han, Xiaotao ;
Li, Liang .
MATERIALS HORIZONS, 2020, 7 (03) :638-666