The future of rapid and automated single-cell data analysis using reference mapping

被引:9
|
作者
Lotfollahi, Mohammad [1 ,2 ]
Hao, Yuhan [3 ,4 ]
Theis, Fabian J. [1 ,2 ,5 ]
Satija, Rahul [3 ,4 ]
机构
[1] German Res Ctr Environm Hlth, Inst Computat Biol, Helmholtz Ctr Munich, Neuherberg, Germany
[2] Wellcome Genome Campus, Wellcome Sanger Inst, Cambridge, England
[3] NYU, Ctr Genom & Syst Biol, New York, NY 10012 USA
[4] New York Genome Ctr, New York, NY 10013 USA
[5] Tech Univ Munich, Dept Math, Garching, Germany
基金
美国国家卫生研究院;
关键词
CHROMATIN ACCESSIBILITY; ATLAS; PREDICTION; RNA;
D O I
10.1016/j.cell.2024.03.009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
As the number of single-cell datasets continues to grow rapidly, workflows that map new data to well-curated reference atlases offer enormous promise for the biological community. In this perspective, we discuss key computational challenges and opportunities for single-cell reference-mapping algorithms. We discuss how mapping algorithms will enable the integration of diverse datasets across disease states, molecular modalities, genetic perturbations, and diverse species and will eventually replace manual and laborious unsupervised clustering pipelines.
引用
收藏
页码:2343 / 2358
页数:16
相关论文
共 50 条
  • [1] Automated mapping of phenotype space with single-cell data
    Samusik N.
    Good Z.
    Spitzer M.H.
    Davis K.L.
    Nolan G.P.
    Nature Methods, 2016, 13 (6) : 493 - 496
  • [2] Automated mapping of phenotype space with single-cell data
    Samusik, Nikolay
    Good, Zinaida
    Spitzer, Matthew H.
    Davis, Kara L.
    Nolan, Garry P.
    NATURE METHODS, 2016, 13 (06) : 493 - +
  • [3] Mapping single-cell data to reference atlases by transfer learning
    Mohammad Lotfollahi
    Mohsen Naghipourfar
    Malte D. Luecken
    Matin Khajavi
    Maren Büttner
    Marco Wagenstetter
    Žiga Avsec
    Adam Gayoso
    Nir Yosef
    Marta Interlandi
    Sergei Rybakov
    Alexander V. Misharin
    Fabian J. Theis
    Nature Biotechnology, 2022, 40 : 121 - 130
  • [4] Mapping single-cell data to reference atlases by transfer learning
    Lotfollahi, Mohammad
    Naghipourfar, Mohsen
    Luecken, Malte D.
    Khajavi, Matin
    Buettner, Maren
    Wagenstetter, Marco
    Avsec, Ziga
    Gayoso, Adam
    Yosef, Nir
    Interlandi, Marta
    Rybakov, Sergei
    Misharin, Alexander, V
    Theis, Fabian J.
    NATURE BIOTECHNOLOGY, 2022, 40 (01) : 121 - +
  • [5] Interactive single-cell data analysis using Cellar
    Euxhen Hasanaj
    Jingtao Wang
    Arjun Sarathi
    Jun Ding
    Ziv Bar-Joseph
    Nature Communications, 13
  • [6] Interactive single-cell data analysis using Cellar
    Hasanaj, Euxhen
    Wang, Jingtao
    Sarathi, Arjun
    Ding, Jun
    Bar-Joseph, Ziv
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [7] Future of single-cell analysis.
    Lillard, SJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2001, 222 : U80 - U80
  • [8] Efficient and precise single-cell reference atlas mapping with Symphony
    Joyce B. Kang
    Aparna Nathan
    Kathryn Weinand
    Fan Zhang
    Nghia Millard
    Laurie Rumker
    D. Branch Moody
    Ilya Korsunsky
    Soumya Raychaudhuri
    Nature Communications, 12
  • [9] Efficient and precise single-cell reference atlas mapping with Symphony
    Kang, Joyce B.
    Nathan, Aparna
    Weinand, Kathryn
    Zhang, Fan
    Millard, Nghia
    Rumker, Laurie
    Moody, D. Branch
    Korsunsky, Ilya
    Raychaudhuri, Soumya
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [10] Automated single-cell motility analysis on a chip using lensfree microscopy
    Ivan Pushkarsky
    Yunbo Liu
    Westbrook Weaver
    Ting-Wei Su
    Onur Mudanyali
    Aydogan Ozcan
    Dino Di Carlo
    Scientific Reports, 4