The future of rapid and automated single-cell data analysis using reference mapping

被引:11
|
作者
Lotfollahi, Mohammad [1 ,2 ]
Hao, Yuhan [3 ,4 ]
Theis, Fabian J. [1 ,2 ,5 ]
Satija, Rahul [3 ,4 ]
机构
[1] German Res Ctr Environm Hlth, Inst Computat Biol, Helmholtz Ctr Munich, Neuherberg, Germany
[2] Wellcome Genome Campus, Wellcome Sanger Inst, Cambridge, England
[3] NYU, Ctr Genom & Syst Biol, New York, NY 10012 USA
[4] New York Genome Ctr, New York, NY 10013 USA
[5] Tech Univ Munich, Dept Math, Garching, Germany
基金
美国国家卫生研究院;
关键词
CHROMATIN ACCESSIBILITY; ATLAS; PREDICTION; RNA;
D O I
10.1016/j.cell.2024.03.009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
As the number of single-cell datasets continues to grow rapidly, workflows that map new data to well-curated reference atlases offer enormous promise for the biological community. In this perspective, we discuss key computational challenges and opportunities for single-cell reference-mapping algorithms. We discuss how mapping algorithms will enable the integration of diverse datasets across disease states, molecular modalities, genetic perturbations, and diverse species and will eventually replace manual and laborious unsupervised clustering pipelines.
引用
收藏
页码:2343 / 2358
页数:16
相关论文
共 50 条
  • [1] Single-cell analysis: Advances and future perspectives
    Hodzic, Emir
    BOSNIAN JOURNAL OF BASIC MEDICAL SCIENCES, 2016, 16 (04) : 313 - 314
  • [2] Fast and precise single-cell data analysis using a hierarchical autoencoder
    Tran, Duc
    Nguyen, Hung
    Tran, Bang
    La Vecchia, Carlo
    Luu, Hung N.
    Nguyen, Tin
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [3] Single-cell regulome data analysis by SCRAT
    Ji, Zhicheng
    Zhou, Weiqiang
    Ji, Hongkai
    BIOINFORMATICS, 2017, 33 (18) : 2930 - 2932
  • [4] Comprehensive Integration of Single-Cell Data
    Stuart, Tim
    Butler, Andrew
    Hoffman, Paul
    Hafemeister, Christoph
    Papalexi, Efthymia
    Mauck, William M., III
    Hao, Yuhan
    Stoeckius, Marlon
    Smibert, Peter
    Satija, Rahul
    CELL, 2019, 177 (07) : 1888 - +
  • [5] Translator: A Transfer Learning Approach to Facilitate Single-Cell ATAC-Seq Data Analysis from Reference Dataset
    Xu, Siwei
    Skarica, Mario
    Hwang, Ahyeon
    Dai, Yi
    Lee, Cheyu
    Girgenti, Matthew J.
    Zhang, Jing
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2022, 29 (07) : 619 - 633
  • [6] Panpipes: a pipeline for multiomic single-cell and spatial transcriptomic data analysis
    Curion, Fabiola
    Rich-Griffin, Charlotte
    Agarwal, Devika
    Ouologuem, Sarah
    Rue-Albrecht, Kevin
    May, Lilly
    Garcia, Giulia E. L.
    Heumos, Lukas
    Thomas, Tom
    Lason, Wojciech
    Sims, David
    Theis, Fabian J.
    Dendrou, Calliope A.
    GENOME BIOLOGY, 2024, 25 (01):
  • [7] Mapping gene regulatory networks from single-cell omics data
    Fiers, Mark W. E. J.
    Minnoye, Liesbeth
    Aibar, Sara
    Gonzalez-Blas, Carmen Bravo
    Atak, Zeynep Kalender
    Aerts, Stein
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2018, 17 (04) : 246 - 254
  • [8] Single-cell trajectories reconstruction, exploration and mapping of omics data with STREAM
    Chen, Huidong
    Albergante, Luca
    Hsu, Jonathan Y.
    Lareau, Caleb A.
    Lo Bosco, Giosue
    Guan, Jihong
    Zhou, Shuigeng
    Gorban, Alexander N.
    Bauer, Daniel E.
    Aryee, Martin J.
    Langenau, David M.
    Zinovyev, Andrei
    Buenrostro, Jason D.
    Yuan, Guo-Cheng
    Pinello, Luca
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [9] scDA: Single cell discriminant analysis for single-cell RNA sequencing data
    Shi, Qianqian
    Li, Xinxing
    Peng, Qirui
    Zhang, Chuanchao
    Chen, Luonan
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 3234 - 3244
  • [10] Single-cell multiomics: technologies and data analysis methods
    Lee, Jeongwoo
    Hyeon, Do Young
    Hwang, Daehee
    EXPERIMENTAL AND MOLECULAR MEDICINE, 2020, 52 (09) : 1428 - 1442