Community Detection for Heterogeneous Multiple Social Networks

被引:0
|
作者
Zhu, Ziqing [1 ]
Yuan, Guan [1 ,2 ,3 ]
Zhou, Tao [4 ]
Cao, Jiuxin [5 ,6 ]
机构
[1] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Jiangsu Key Lab Mine Mech & Elect Equipment, Xuzhou 221116, Jiangsu, Peoples R China
[3] Minist Educ, Engn Res Ctr, Digitizat Mine, Xuzhou 221116, Jiangsu, Peoples R China
[4] Nanjing Tech Univ, Coll Comp & Informat Engn, Nanjing 211816, Peoples R China
[5] Southeast Univ, Sch Cyber Sci & Engn, Nanjing 211189, Peoples R China
[6] Purple Mt Labs, Nanjing 211111, Peoples R China
来源
IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS | 2024年 / 11卷 / 05期
关键词
Social networking (online); Multiplexing; Topology; Blogs; Nonhomogeneous media; Detection algorithms; Symmetric matrices; Clustering; community detection; data mining; matrix factorization; social network;
D O I
10.1109/TCSS.2024.3399784
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The community plays a crucial role in understanding user behavior and network characteristics in social networks. Some users can use multiple social networks at once for a variety of objectives. These users are called overlapping users who bridge different social networks. Detecting communities across multiple social networks is vital for interaction mining, information diffusion, and behavior migration analysis among networks. This article presents a community detection method based on nonnegative matrix trifactorization for multiple heterogeneous social networks, which formulates a common consensus matrix to represent the global fused community. Specifically, the proposed method involves creating adjacency matrices based on network structure and content similarity, followed by alignment matrices that distinguish overlapping users in different social networks. With the generated alignment matrices, the method could enhance the fusion degree of the global community by detecting overlapping user communities across networks. The effectiveness of the proposed method is evaluated with new metrics on Twitter, Instagram, and Tumblr datasets. The results of the experiments demonstrate its superior performance in terms of community quality and community fusion.
引用
收藏
页码:6966 / 6981
页数:16
相关论文
共 50 条
  • [21] Community Detection in Partially Observable Social Networks
    Tran, Cong
    Shin, Won-Yong
    Spitz, Andreas
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2022, 16 (02)
  • [22] An Overview of Community Detection Algorithms in Social Networks
    Varsha, Kulkarni
    Patil, Kiran Kumari
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT-2020), 2020, : 121 - 126
  • [23] Contextual Information Based Community Detection in Attributed Heterogeneous Networks
    Dias, Marcio
    Braz, Paulo
    Bezerra, Eduardo
    Goldschmidt, Ronaldo
    IEEE LATIN AMERICA TRANSACTIONS, 2019, 17 (02) : 236 - 244
  • [24] Community detection in attributed networks based on heterogeneous vertex interactions
    Xin Wang
    Jianglong Song
    Kai Lu
    Xiaoping Wang
    Applied Intelligence, 2017, 47 : 1270 - 1281
  • [25] Community detection in attributed networks based on heterogeneous vertex interactions
    Wang, Xin
    Song, Jianglong
    Lu, Kai
    Wang, Xiaoping
    APPLIED INTELLIGENCE, 2017, 47 (04) : 1270 - 1281
  • [26] A FRAMEWORK FOR COMMUNITY DETECTION IN HETEROGENEOUS MULTI-RELATIONAL NETWORKS
    Liu, Xin
    Liu, Weichu
    Murata, Tsuyoshi
    Wakita, Ken
    ADVANCES IN COMPLEX SYSTEMS, 2014, 17 (06):
  • [27] Integrating heterogeneous structures and community semantics for unsupervised community detection in heterogeneous networks
    Zhao, Yan
    Li, Weimin
    Liu, Fangfang
    Wang, Jingchao
    Luvembe, Alex Munyole
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [28] A new scalable leader-community detection approach for community detection in social networks
    Ahajjam, Sara
    El Haddad, Mohamed
    Badir, Hassan
    SOCIAL NETWORKS, 2018, 54 : 41 - 49
  • [29] MODULARITY BASED COMMUNITY DETECTION IN HETEROGENEOUS NETWORKS
    Zhang, Jingfei
    Chen, Yuguo
    STATISTICA SINICA, 2020, 30 (02) : 601 - 629
  • [30] Fast Community Detection in Dynamic and Heterogeneous Networks
    Zhang, Maoyu
    Zhang, Jingfei
    Dai, Wenlin
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024, 33 (02) : 487 - 500