Resource-efficient, sensor-based human activity recognition with lightweight deep models boosted with attention

被引:1
|
作者
Agac, Sumeyye [1 ]
Incel, Ozlem Durmaz [1 ]
机构
[1] Bogazici Univ, Dept Comp Engn, TR-34684 Istanbul, Turkiye
关键词
Attention mechanism; Convolutional neural networks; Human activity recognition; Hybrid deep models; Motion sensors; Resource consumption; OF-THE-ART; FUSION; NETWORKS;
D O I
10.1016/j.compeleceng.2024.109274
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
With their automatic feature extraction capabilities, deep learning models have become more widespread in sensor-based human activity recognition, particularly on larger datasets. However, their direct use on mobile and wearable devices is challenging due to the extensive resource requirements. Concurrently, attention-based models are emerging to improve recognition performance by dynamically emphasizing relevant parts of features and disregarding the irrelevant ones, particularly in the computer vision domain. This study introduces a novel application of attention mechanisms to smaller deep architectures, investigating whether smaller models can achieve comparable recognition performance to larger models in sensor-based human activity recognition systems while keeping resource usage at lower levels. For this purpose, we integrate the convolutional block attention module into a hybrid model, deep convolutional and long short-term memory network. Experiments are conducted using five public datasets in three model sizes: lightweight, moderate and original. The results show that applying attention to the lightweight model enables achieving similar recognition performances to the moderate-size model, and the lightweight model requires approximately 2-13 times fewer parameters and 3.5 times fewer flops. We also conduct experiments with sensor data at lower sampling rates and from fewer sensors attached to different body parts. The results show that attention improves recognition performance under lower sampling rates, as well as under higher sampling rates when model sizes are smaller, and mitigates the impact of missing data from one or more body parts, making the model more suitable for real-world sensor-based applications.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] A Pattern Mining Approach to Sensor-Based Human Activity Recognition
    Gu, Tao
    Wang, Liang
    Wu, Zhanqing
    Tao, Xianping
    Lu, Jian
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2011, 23 (09) : 1359 - 1372
  • [22] Wearable Sensor-Based Human Activity Recognition with Transformer Model
    Dirgova Luptakova, Iveta
    Kubovcik, Martin
    Pospichal, Jiri
    SENSORS, 2022, 22 (05)
  • [23] A comparative analysis on sensor-based human activity recognition using various deep learning techniques
    Indumathi V.
    Prabakeran S.
    Lecture Notes on Data Engineering and Communications Technologies, 2021, 66 : 919 - 938
  • [24] An Efficient and Lightweight Deep Learning Model for Human Activity Recognition on Raw Sensor Data in Uncontrolled Environment
    Choudhury, Nurul Amin
    Soni, Badal
    IEEE SENSORS JOURNAL, 2023, 23 (20) : 25579 - 25586
  • [25] Sensor-Based Human Activity Recognition for Elderly In-patients with a Luong Self-Attention Network
    Nithin, G. R.
    Chhabra, Mihika
    Hao, Yujiao
    Wang, Boyu
    Zheng, Rong
    2021 IEEE/ACM CONFERENCE ON CONNECTED HEALTH: APPLICATIONS, SYSTEMS AND ENGINEERING TECHNOLOGIES (CHASE 2021), 2021, : 97 - 101
  • [26] Invariant Feature Learning for Sensor-Based Human Activity Recognition
    Hao, Yujiao
    Zheng, Rong
    Wang, Boyu
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2022, 21 (11) : 4013 - 4024
  • [27] MobiLipNet: Resource-efficient deep learning based lipreading
    Koumparoulis, Alexandros
    Potamianos, Gerasimos
    INTERSPEECH 2019, 2019, : 2763 - 2767
  • [28] VALERIAN: Invariant Feature Learning for IMU Sensor-based Human Activity Recognition in the Wild
    Hao, Yujiao
    Wang, Boyu
    Zheng, Rong
    PROCEEDINGS 8TH ACM/IEEE CONFERENCE ON INTERNET OF THINGS DESIGN AND IMPLEMENTATION, IOTDI 2023, 2023, : 66 - 78
  • [29] Baseline Model Training in Sensor-Based Human Activity Recognition: An Incremental Learning Approach
    Xiao, Jianyu
    Chen, Linlin
    Chen, Haipeng
    Hong, Xuemin
    IEEE ACCESS, 2021, 9 : 70261 - 70272
  • [30] Hand-Crafted Features With a Simple Deep Learning Architecture for Sensor-Based Human Activity Recognition
    Albadawi, Yaman
    Shanableh, Tamer
    IEEE SENSORS JOURNAL, 2024, 24 (17) : 28300 - 28313