MinMax Methods for Optimal Transport and Beyond: Regularization, Approximation and Numerics

被引:0
|
作者
Aquino, Luca De Gennaro [1 ]
Eckstein, Stephan [2 ]
机构
[1] Grenoble Ecole Management, Dept Accounting Law & Finance, Grenoble, France
[2] Univ Konstanz, Dept Math & Stat, D-78464 Constance, Germany
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study MinMax solution methods for a general class of optimization problems related to (and including) optimal transport. Theoretically, the focus is on fitting a large class of problems into a single MinMax framework and generalizing regularization techniques known from classical optimal transport. We show that regularization techniques justify the utilization of neural networks to solve such problems by proving approximation theorems and illustrating fundamental issues if no regularization is used. We further study the relation to the literature on generative adversarial nets, and analyze which algorithmic techniques used therein are particularly suitable to the class of problems studied in this paper. Several numerical experiments showcase the generality of the setting and highlight which theoretical insights are most beneficial in practice.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Randomized Methods for Computing Optimal Transport Without Regularization and Their Convergence Analysis
    Xie, Yue
    Wang, Zhongjian
    Zhang, Zhiwen
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 100 (02)
  • [2] Vector quantile regression and optimal transport, from theory to numerics
    Guillaume Carlier
    Victor Chernozhukov
    Gwendoline De Bie
    Alfred Galichon
    Empirical Economics, 2022, 62 : 35 - 62
  • [3] On Optimal Regularization Methods for Fractional Differentiation
    Tautenhahn, U.
    Gorenflo, R.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 1999, 18 (02): : 449 - 467
  • [4] METHODS FOR REGULARIZATION OF OPTIMAL CONTROL PROBLEMS
    TIKHONOV, AN
    DOKLADY AKADEMII NAUK SSSR, 1965, 162 (04): : 763 - &
  • [5] Optimal numerical methods for choosing an optimal regularization parameter
    Okamoto, K.
    Li, B. Q.
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2007, 51 (06) : 515 - 533
  • [6] THE LINEAR TIME OPTIMAL PROBLEM REVISITED - REGULARIZATION AND APPROXIMATION
    BACCIOTTI, A
    BIANCHINI, RM
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1990, 4B (02): : 391 - 410
  • [7] Approximation of generalized minimizers and regularization of optimal control problems
    Guerra, Manuel
    Sarychev, Andrey
    LAGRANGIAN AND HAMILTONIAN METHODS FOR NONLINEAR CONTROL 2006, 2007, 366 : 269 - +
  • [8] Correction to: Vector quantile regression and optimal transport, from theory to numerics
    Guillaume Carlier
    Victor Chernozhukov
    Gwendoline De Bie
    Alfred Galichon
    Empirical Economics, 2022, 62 : 63 - 63
  • [9] Entropic regularization of continuous optimal transport problems
    Clason, Christian
    Lorenz, Dirk A.
    Mahler, Hinrich
    Wirth, Benedikt
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 494 (01)
  • [10] Holographic transport beyond the supergravity approximation
    Buchel, Alex
    Cremonini, Sera
    Early, Laura
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, 2024 (04)