Multiphase behavior and fluid flow of oil-CO2-water in shale oil reservoirs: Implication for CO2-water-alternating-gas huff-n-puff

被引:3
|
作者
Han, Xiao
Song, Zhaojie [1 ,2 ]
Deng, Sen
Li, Binhui
Li, Peiyu
Lan, Yubo
Song, Yilei
Zhang, Lichao
Zhang, Kaixing
Zhang, Yunfei
机构
[1] China Univ Petr, Natl Key Lab Petr Resources & Engn, Beijing 102249, Peoples R China
[2] China Univ Petr, Unconvent Petr Res Inst, Beijing 102249, Peoples R China
基金
中国国家自然科学基金;
关键词
ALTERNATING-GAS INJECTION; NUMERICAL-SIMULATION; PHASE-BEHAVIOR; WATER; PERFORMANCE; RECOVERY; STORAGE;
D O I
10.1063/5.0213861
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Based on the CO(2-)WAG (water-alternating-gas) flooding for conventional reservoirs, CO2-WAG huff-n-puff in shale reservoirs is proposed. To clarify the phase behavior and fluid flow of oil-CO2-water in the CO2-WAG huff-n-puff process, a series of experimental studies are conducted under different injection sequences of CO2 and water. The results show that the saturation pressure of the oil-CO2-water systems is lower than that of the oil-CO2 systems since a portion of the CO2 is dissolved in water. In addition, CO2 injection followed by water can significantly reduce the dissolution of CO2 in the water. CO2 and water preferentially flow into the macropores and bedding fractures of the oil-saturated cores at the injection stage, and the oil in mesopores and micropores reflows into macropores and bedding fractures at the soaking stage. At the depressurization production stage, the oil in mesopores and micropores is gradually extracted. Compared to water injection followed by CO2, injecting CO2 first can avoid the barrier effect caused by the subsequent injection of water and promotes oil flow into mesopores and micropores in the matrix. At the end of production, the oil recovered from water injection followed by CO2 mainly originates from macropores, while that from CO2 injection followed by water primarily comes from mesopores.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Geochemical insights for CO2 huff-n-puff process in shale oil reservoirs
    Chen, Yongqiang
    Sari, Ahmad
    Zeng, Lingping
    Saeedi, Ali
    Xie, Quan
    JOURNAL OF MOLECULAR LIQUIDS, 2020, 307
  • [2] LOWER LIMITS OF COUPLING PHYSICAL PROPERTIES OF SHALE OIL RESERVOIRS FOR THE APPLICATION OF CO2 HUFF-N-PUFF
    Wang, Peng
    Huang, Shijun
    Zhao, Fenglan
    ENERGY PRODUCTION AND MANAGEMENT IN THE 21ST CENTURY V: The Quest for Sustainable Energy, 2022, 255 : 3 - 13
  • [3] Experimental and Numerical Study on CO2 Sweep Volume during CO2 Huff-n-Puff Enhanced Oil Recovery Process in Shale Oil Reservoirs
    Li, Lei
    Su, Yuliang
    Sheng, James J.
    Hao, Yongmao
    Wang, Wendong
    Lv, Yuting
    Zhao, Qingmin
    Wang, Haitao
    ENERGY & FUELS, 2019, 33 (05) : 4017 - 4032
  • [4] Diffusion Effect on Shale Oil Recovery by CO2 Huff-n-Puff
    Peng, Zesen
    Sheng, J.
    ENERGY & FUELS, 2023, 37 (04) : 2774 - 2790
  • [5] Optimization and Analysis of CO2 Huff-n-Puff Process in Shale Oil Reservoirs Using Response Surface Methodology (RSM)
    Wang, Yinqing
    Hu, Jinghong
    Xie, Weiwei
    Zhang, Yuan
    GEOFLUIDS, 2022, 2022
  • [6] Shale Oil Reservoir Production Characteristics in Microscopic Pores Developed by Water/CO2 Huff-n-Puff
    Xie, Zehui
    Xiong, Yu
    Song, Zhaojie
    Chang, Jiajing
    Zhang, Kaixing
    Fan, Zhaoyu
    ENERGY & FUELS, 2025, 39 (07) : 3517 - 3527
  • [7] Numerical Study on the Enhanced Oil Recovery by CO2 Huff-n-Puff in Shale Volatile Oil Formations
    Zheng, Aiwei
    Lu, Wentao
    Zhang, Rupeng
    Sun, Hai
    ENERGIES, 2024, 17 (19)
  • [8] Study on CO2 huff-n-puff of horizontal wells in continental tight oil reservoirs
    Tang Mingming
    Zhao Hongyu
    Ma Huifang
    Lu Shuangfang
    Chen Yuming
    FUEL, 2017, 188 : 140 - 154
  • [9] Hybrid CO2-N2 huff-n-puff strategy in unlocking tight oil reservoirs
    Li, Songyan
    Sun, Lu
    Wang, Lei
    Li, Zhaomin
    Zhang, Kaiqiang
    FUEL, 2022, 309
  • [10] A comparative study of CO2 and N2 huff-n-puff EOR performance in shale oil production
    Li, Lei
    Su, Yuliang
    Hao, Yongmao
    Zhan, Shiyuan
    Lv, Yuting
    Zhao, Qingmin
    Wang, Haitao
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2019, 181