Rigidity of Fibonacci Circle Maps with a Flat Piece and Different Critical Exponents

被引:0
作者
Ndawa, Bertuel T. A. N. G. U. E. [1 ]
机构
[1] Univ Ngaoundere, Univ Inst Technol, Comp Engn, Ngaoundere 455, Cameroon
关键词
Circle map; Flat piece; Critical exponent; Geometry; Renormalization; Rigidity; RENORMALIZATION; DIFFEOMORPHISMS; HYPERBOLICITY; DYNAMICS;
D O I
10.1007/s10883-024-09687-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider order preserving C3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>3$$\end{document} circle maps with a flat piece, Fibonacci rotation number, and negative Schwarzian derivative where the critical exponents (the degrees of the singularities at the boundary of the flat piece) might be different.This paper treats the rigidity (geometrical) characteristic of a map of our class. We prove that when the critical exponents belong to (1,2)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1,2)<^>2$$\end{document}, the geometry of the system is degenerate (double exponentially fast). As a consequence, the renormalization diverges, and the rigidity (geometric) class depends on three ordered pairs.
引用
收藏
页数:42
相关论文
共 25 条
[1]  
Artur A., 2013, B Braz Math Soc, V44, P611, DOI DOI 10.1007/S001090000086
[2]  
de Faria E., 1999, J. Eur. Math. Soc, V1, P339, DOI DOI 10.1007/S100970050011
[3]   Global hyperbolicity of renormalization for Cr unimodal mappings [J].
De Faria, Edson ;
De Melo, Welington ;
Pinto, Alberto .
ANNALS OF MATHEMATICS, 2006, 164 (03) :731-824
[4]   Rigidity of C2 infinitely renormalizable unimodal maps [J].
de Melo, W ;
Pinto, AA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 208 (01) :91-105
[5]   ONE-DIMENSIONAL DYNAMICS - THE SCHWARZIAN DERIVATIVE AND BEYOND [J].
DEMELO, W ;
VANSTRIEN, S .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 18 (02) :159-162
[6]   DIFFERENTIABLE CIRCLE MAPS WITH A FLAT INTERVAL [J].
GRACZYK, J ;
JONKER, LB ;
SWIATEK, G ;
TANGERMAN, FM ;
VEERMAN, JJP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 173 (03) :599-622
[7]   Dynamics of circle maps with flat spots [J].
Graczyk, Jacek .
FUNDAMENTA MATHEMATICAE, 2010, 209 (03) :267-290
[8]   RIGIDITY OF CRITICAL CIRCLE MAPS [J].
Guarino, Pablo ;
Martens, Marco ;
de Melo, Welington .
DUKE MATHEMATICAL JOURNAL, 2018, 167 (11) :2125-2188
[9]  
HERMAN MR, 1979, PUBL MATH IHES, V49, P5
[10]   Renormalization conjecture and rigidity theory for circle diffeomorphisms with breaks [J].
Khanin, Konstantin ;
Kocic, Sasa .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2014, 24 (06) :2002-2028