Machine learning application to seismic site classification prediction model using Horizontal-to-Vertical Spectral Ratio (HVSR) of strong-ground motions

被引:0
|
作者
Phi, Francis G. [1 ]
Cho, Bumsu [2 ]
Kim, Jungeun [2 ]
Cho, Hyungik [3 ]
Choo, Yun Wook [1 ]
Kim, Dookie [1 ]
Kim, Inhi [4 ]
机构
[1] Kongju Natl Univ, Dept Civil & Environm Engn, 1223-24 Cheonan-daero, Cheonan Si, Chungcheongnam, South Korea
[2] Kongju Natl Univ, Dept Comp Sci & Engn, 1223-24 Cheonan-daero, Cheonan Si, Chungcheongnam, South Korea
[3] Andong Natl Univ, Dept Civil Syst Engn, 1375 Gyeongdong-ro, Andong 36729, Gyeongsangbug D, South Korea
[4] Korea Adv Inst Sci & Technol, Cho Chun Shik Grad Sch Mobil, 193 Munji-ro, Daejeon, South Korea
基金
新加坡国家研究基金会;
关键词
earthquake; machine learning; seismic design; site characterization; site classification prediction; SOIL-STRUCTURE INTERACTION; STATIONS; H/V; AMPLIFICATION; TAIWAN;
D O I
10.12989/gae.2024.37.6.539
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This study explores development of prediction model for seismic site classification through the integration of machine learning techniques with horizontal-to-vertical spectral ratio (HVSR) methodologies. To improve model accuracy, the research employs outlier detection methods and, synthetic minority over -sampling technique (SMOTE) for data balance, and evaluates using seven machine learning models using seismic data from KiK-net. Notably, light gradient boosting method (LGBM), gradient boosting, and decision tree models exhibit improved performance when coupled with SMOTE, while Multiple linear regression (MLR) and Support vector machine (SVM) models show reduced efficacy. Outlier detection techniques significantly enhance accuracy, particularly for LGBM, gradient boosting, and voting boosting. The ensemble of LGBM with the isolation forest and SMOTE achieves the highest accuracy of 0.91, with LGBM and local outlier factor yielding the highest F1-score of 0.79. Consistently outperforming other models, LGBM proves most efficient for seismic site classification when supported by appropriate preprocessing procedures. These findings show the significance of outlier detection and data balancing for precise seismic soil classification prediction, offering insights and highlighting the potential of machine learning in optimizing site classification accuracy.
引用
收藏
页码:539 / 554
页数:16
相关论文
共 50 条
  • [11] Site effect and earthquake disaster characteristics in Guangzhou area from horizontal-to-vertical spectral ratio(HVSR) method
    Zong J.-Y.
    Sun X.-L.
    Zhang P.
    Dizhen Dizhi, 2020, 42 (03): : 628 - 639
  • [12] A study of horizontal-to-vertical component spectral ratio as a proxy for site classification in central Asia
    Sedaghati, Farhad
    Rahpeyma, Sahar
    Ansari, Anooshiravan
    Pezeshk, Shahram
    Zare, Mehdi
    Daneshvaran, Siamak
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2020, 223 (02) : 1355 - 1377
  • [13] Seismic Site Classification from the Horizontal-to-Vertical Response Spectral Ratios: Use of the Spanish Strong-Motion Database
    Pinzon, Luis A.
    Pujades, Luis G.
    Macau, Albert
    Carreno, Emilio
    Alcalde, Juan M.
    GEOSCIENCES, 2019, 9 (07)
  • [14] Estimation of glacier thicknesses and basal properties using the horizontal-to-vertical component spectral ratio (HVSR) technique from passive seismic data
    Picotti, Stefano
    Francese, Roberto
    Giorgi, Massimo
    Pettenati, Franco
    Carcione, Jose M.
    JOURNAL OF GLACIOLOGY, 2017, 63 (238) : 229 - 248
  • [15] Application of Microtremor Horizontal-to-Vertical Spectral Ratio (MHVSR) Analysis for Site Characterization: State of the Art
    Molnar, S.
    Cassidy, J. F.
    Castellaro, S.
    Cornou, C.
    Crow, H.
    Hunter, J. A.
    Matsushima, S.
    Sanchez-Sesma, F. J.
    Yong, A.
    SURVEYS IN GEOPHYSICS, 2018, 39 (04) : 613 - 631
  • [16] Application of Microtremor Horizontal-to-Vertical Spectral Ratio (MHVSR) Analysis for Site Characterization: State of the Art
    S. Molnar
    J. F. Cassidy
    S. Castellaro
    C. Cornou
    H. Crow
    J. A. Hunter
    S. Matsushima
    F. J. Sánchez-Sesma
    A. Yong
    Surveys in Geophysics, 2018, 39 : 613 - 631
  • [17] Improvement of the objective function in the velocity structure inversion based on horizontal-to-vertical spectral ratio of earthquake ground motions
    Rong, Mianshui
    Li, Xiaojun
    Fu, Lei
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2021, 224 (01) : 1 - 16
  • [18] Site classification using horizontal-to-vertical response spectral ratios and its impact when deriving empirical ground-motion prediction equations
    Fukushima, Yoshimitsu
    Bonilla, Luis Fabian
    Scotti, Oona
    Douglas, John
    JOURNAL OF EARTHQUAKE ENGINEERING, 2007, 11 (05) : 712 - 724
  • [19] Microtremor Study using Horizontal to Vertical Spectral Ratio (HVSR) Method in RDE Site, Serpong
    Iswanto, Eko Rudi
    Indrawati, Yuni
    Riyanto, Theo Alvin
    EKSPLORIUM-BULETIN PUSAT TEKNOLOGI BAHAN GALIAN NUKLIR, 2019, 40 (02): : 105 - 114
  • [20] Bedrock Depth Variations and Their Applications to identify Blind Faults in the Pohang area using the Horizontal-to-Vertical Spectral Ratio (HVSR)
    Kang, Su Young
    Kim, Kwang-Hee
    JOURNAL OF THE KOREAN EARTH SCIENCE SOCIETY, 2022, 43 (01): : 188 - 198